
A Study of Neural Architectures for General Knowledge Crossword Clue
Solving

Rajat Agrawal
ucabra4
18153777

Jack Copsey
ucabops
19149017

Alok C. Suresh
ucabacs
15013377

Daniel A. Williams
ucabdaw
19031356

Abstract

In this paper we explore various NLP-inspired
methods for configuring automated crossword
solvers. Completing the entries within a cross-
word is an example of the reverse dictionary
problem: how can we measure the similarity
between a source phrase and a target phrase?
Sub-tasks under this problem topic include the
retrieval of words based on their definitions,
and finding suitable replacements for short
phrases in the form of synonyms. We con-
sider techniques including word embeddings
and recurrent neural networks, and define sev-
eral models applicable to the problem. To
quantitatively compare performances, we then
apply our models to solving crossword puzzles
from The Guardian. Constraints imposed by
the crosswords such as known word lengths
provide additional performance gains. The
main finding of our paper is that simple pool-
ing methods (e.g., bag-of-words) are more ef-
fective than RNN architectures for crossword
solving, due primarily to the typically short
lengths of crossword clues. We conclude by
suggesting several further directions our work
could be taken in.

1 Introduction

1.1 Context
As an application of open-domain question answer-
ing, the reverse dictionary problem seeks to find
the closest phrase in semantic meaning (head) to
a given definition (gloss). Reverse dictionaries are
frequently used by professional writers to iden-
tify suitable words to express a concept. Previ-
ous research has concentrated on using informa-
tion retrieval techniques, such as cosine similarity
with tf-idf weightings (Hill et al., 2016). Recent
advances in neural network architectures for gen-
erating word embeddings have had a substantial
influence on current approaches to the reverse dic-
tionary problem (Parry, 2018). By generating an

embedding-based representation of a gloss’s words,
one can estimate the head’s embedding by search-
ing for the gloss representation’s nearest neighbors
in the embedding space. Current research has fo-
cused on the choice of latent space for embeddings
and the methods for computing them, including
neural bags of words (NBOW) and recurrent neural
networks (RNN).

Within the reverse dictionary problem, we con-
sider the non-cryptic general knowledge crossword
puzzle. Given a set of glosses (clues), one must
identify the most suitable head (a word or phrase)
that satisfies a length constraint, does not place let-
ters on the board in conflict with intersecting heads
and, where applicable, permutes into a provided
anagram. The challenges of the general knowledge
crossword puzzle stem from variety of clue types.
Many clues are synonyms, antonyms or definition
phrases, however semantic ambiguity may mean
that more than one candidate head satisfies one
or more of the aforementioned constraints. Other
clues may require domain-specific knowledge that
is weakly captured by pre-trained language models,
such as geography, literature and music. To gener-
ate appropriate candidate heads for such clues, it
may be necessary to fine-tune such language mod-
els using authoritative encyclopedic sources (e.g.
Wikipedia).

In the remainder of this introduction we review
the existing literature and formulate a problem
statement for our investigation. In Section 2 we
describe two neural-based architectures for an im-
proved crossword solver. We present initial per-
formance results in Section 3, followed by a dis-
cussion of these results in Section 4. We conclude
with final observations in Section 5.

1.2 Relevant Work

Crossword puzzle solving is an NP-complete prob-
lem (Purdin and Harris, 1993). This encourages

mailto://ucabra4@ucl.ac.uk
mailto://ucabops@ucl.ac.uk
mailto://ucabacs@ucl.ac.uk
mailto://ucabdaw@ucl.ac.uk


probabilistic approaches to identifying candidate
heads and filling in missing letters. In Purdin and
Harris (1993) a genetic algorithm is developed for
the go-words variant of the crossword puzzle; the
algorithm formulation is tied closely to the puzzle
format and a counterpart for general knowledge
crossword puzzles is not immediately obvious.

Other attempts at crossword puzzle solvers have
been informed by information retrieval techniques.
In Hage (2016) simple candidate heads are identi-
fied with modified binary search, with fuzzy search
for more difficult clues and pattern matching for
character gap filling, nevertheless the solver strug-
gles with referential clues (e.g. See 9 across). Jobin
et al. (2017) explore the use of hidden semantic in-
formation extracted from clue sentences and entries
from the WordNet database1, although the model
struggles with word inflections (e.g. past tense),
pop culture references and obscure phrases, non-
standard vocabulary (including slang) and heads
containing multiple words.

A seminal approach described in Shazeer et al.
(1999) and expanded in Littman et al. (2002) formu-
lates a probabilistic constraint satisfaction problem
for identifying suitable heads. The latter paper in-
troduces the PROVERB crossword solver, which
integrates an ensemble of expert modules to search
through different domains of information. Each
module’s guess and confidence level is merged to
produce a list of candidate heads which is fed to
the solver. To fill in gaps and filter candidates,
an “implicit distribution” module evaluates the
character-level probability of a given head, allow-
ing PROVERB to iteratively refine a puzzle’s solu-
tion.

A number of subsequent papers’ architectures
have been influenced by PROVERB’s design. In
Radev et al. (2016), CRUCIFORM improves on the
performance of PROVERB by exploiting a much
larger database of online crossword clues and ar-
ticles from the English-language Wikipedia. WE-
BCROW integrates web search functionality with a
crossword clue database to identify lists of candi-
date heads (Ernandes et al., 2005). The web search
module retrieves relevant documents, ranks can-
didate heads by their tf-idf scores and filters out
morphologically-inappropriate candidates (e.g. ex-
cluding adverbs when the head must be a noun).
Motivated by PROVERB, WEBCROW also imple-
ments an implicit distribution module, expert guess

1https://wordnet.princeton.edu/

merger and maximum-likelihood grid-filling.

Following Ernandes et al. (2005), in Barlacchi
et al. (2014b) the BM25 ranking function replaces
tf-idf scores for ranking database clue similarities
with the target clue, while a logistic regression mod-
ule converts these scores into more intuitive confi-
dence values. In addition, support vector classifiers
have been trained for clue re-ranking (Barlacchi
et al., 2014a; Nicosia et al., 2015; Moschitti et al.,
2015).

Recent crossword puzzle solvers have explored
neural network architectures driven by end-to-end
learning. Pre-trained word embeddings and feed-
forward deep neural networks have been used to
calculate clue similarity scores for WEBCROW

(Severyn et al., 2015; Nicosia and Moschitti, 2016).
Similarly the models developed by Hill et al. (2016)
and Parry (2018) concentrate on individual clues,
using pre-trained word embeddings to find the best
single-word head for a given gloss.

As a baseline in Hill et al. (2016), Word2Vec em-
beddings are used with a variant of cosine distance
to compute similarity scores between the clue sen-
tence and candidate heads. The authors then con-
centrate on recurrent neural networks (RNN), with
the clue sentence as an input and the final stage’s
output yielding the clue’s embedding representa-
tion. To improve robustness in handling rare and
obscure clues, the training data includes Word2Vec
embeddings for approximately 90, 000 single-word
heads, sentences from the first paragraphs of the
respective Simple English Wikipedia articles (as
quasi-glosses), and approximately 850, 000 addi-
tional {head, gloss} pairs from four online dictio-
naries. Crossword clue-answer pairs have been col-
lated from various online sources (primarily The
Guardian quick crosswords) to evaluate the per-
formance of the baseline and RNN-based models.
The models compare favorably with commercial,
database-driven systems for long clue sentences
and achieve comparable accuracy with shorter clue
sentences.

Building on Hill et al. (2016), Parry (2018) ex-
plores different RNN structures. To capture con-
textual dependencies between words, the author
replaces the unidirectional long short-term memory
network (LSTM) with a bidirectional LSTM. The
average of each stage’s output is considered instead
of just the final stage’s output, which the author ar-
gues increases the influence of earlier gloss words
on the output embedding. Finally the byte-pair en-

https://wordnet.princeton.edu/


coding algorithm is used to generate a sub-word
language model of the glosses to increase robust-
ness with unseen words. These changes boost per-
formance with respect to Hill et al. (2016).

2 Design

2.1 Data Collection and Storage

In gathering a database of crossword puzzles we
have concentrated on the quick category of cross-
words published by the British newspaper The
Guardian. Empirically these puzzles are less cryp-
tic than those of The New York Times and La Rep-
publica, examined in Hill et al. (2016) and Ernan-
des et al. (2005) respectively. We have processed
5, 000 puzzles dating from 2002 to 2018, extracting
for each puzzle the set of clue identifiers (number
and direction), clue words, corresponding answers,
lengths of individual tokens in the answers, and
positions in the puzzle grid.2 An example cross-
word from the dataset is depicted in Figure 1. For
the purpose of model evaluation we have used a
subset of 500 crossword puzzles, corresponding
to 11, 851 individual clue-answer pairs, while for
supervised model training we use the remaining
4, 500 puzzles.

Each clue contains at least one gloss, of three
possible types: synonymous (containing a defini-
tion e.g. ‘Dog (5)’), an anagram (containing a per-
mutation of the answer’s letters, e.g. ‘Endurance
- it’s them (anag)’), or referential (e.g. ‘See 8
across’). For synonymous glosses we pre-process
the literal string by removing dates, punctuation,
the possessive ’s and quotation marks, then convert
the clue string to lowercase letters and tokenise
using white spaces. With anagram glosses we re-
move non-alphabetic characters before converting
the character sequence to lowercase. For each clue
we then return a list of the synonym tokens and
the anagram characters where applicable. 96.19%
of clues contain one gloss while 3.81% of clues
contain two or more glosses, e.g. ‘generous; type’
for kind. We retain a list of each individual gloss
for downstream filtering tasks, described in greater
detail in Section 2.3.

2.2 Baseline Model: Neural Bag of Words

As a baseline model we implement an unsupervised
NBOW model, using the Word2Vec embeddings

2See https://github.com/ucabops/robbie
for the reference code used to parse the raw crossword data

pre-trained on the Google News corpus (Mikolov
et al., 2013) as described in Hill et al. (2016).

For each clue phrase, we find the embedding
vector representation of each token and use mean
pooling to yield an estimate of the clue’s repre-
sentation. We then query the Word2Vec model
for the most similar vectors to the clue representa-
tion, yielding a list of candidate answers. Formally,
the pre-trained Word2Vec model defines a map-
ping σ from a vocabulary W to a 300-dimensional
vector space R300 known as the embedding space.
This mapping can be extended to arbitrary-length
sequences of tokens s = (s1, . . . , sn) ∈ Wn by
mapping over each token separately:

σn : (s1, . . . , sn) 7→

σ(s1)
...

σ(sn)

 ∈ Rn×300

Mean pooling transforms this matrix into a single
vector σ̄n(s) = 1

n

∑
i σ(si) ∈ R300 by summing

along columns, which can then be compared to
each of the vectors in the set

σ(W ) = {σ(w) |w ∈W} ⊂ R300

using cosine similarity. This defines a ranking for
the tokens w ∈ W according to how similar they
are to σ̄n(s); the predicted solution t̂ is set to the
token with the best rank:

t̂ = argmin
w∈W

σ̄n(s) · σ(w)

‖σ̄n(s)‖ ‖σ(w)‖

For all of our models, we solely consider the sim-
ilarities between vectors in an embedding space for
the purposes of suggesting an initial list of candi-
date answers, prior to crossword constraints being
imposed. In particular we have opted for our mod-
els not to consult multiple knowledge bases when
searching for candidate answers, as models of this
type have already been studied extensively both
when applied to crossword puzzles in particular
and more generally in the context of QA frame-
works. See Ernandes et al. (2005), Radev et al.
(2016) and Kalyanpur et al. (2012) for in-depth
treatments of this topic.

In generating the mean-pooled sentence repre-
sentation we neglect gloss tokens not found in the
vocabulary of the pre-trained Word2Vec model,
affecting approximately 32.53% of clues. These
tokens fall into three categories: Word2Vec stop
words, proper names (i.e. of people or locations)
and British English spelling variants.

https://www.theguardian.com/crosswords/quick/10000#20-down


Figure 1: Online edition of quick crossword no. 13,092 from The Guardian, with clues and corresponding solutions
laid out in the grid. Individual tokens are separated either by thick black bars (used to denote spaces) or by hyphens.

Model Constraint Filter
1 2 3 4 5 6

BOW-0
BOW-1 x
BOW-2 x x
BOW-3 x x x
BOW-4 x x x x
BOW-5 x x x x x
BOW-6 x x x x
BOW-7 x x x x x x
BOW-8 x x x x x

Table 1: Model Functionality

2.3 Enhanced Neural Bag of Words

To enhance the performance of the baseline model,
we impose a series of filters that eliminate candi-
date answers that do not satisfy the puzzle’s con-
straints.

First we remove candidate answers that contain
one or more words provided in the clue sentence,
since these never appear in the solution. We also
remove candidate answers with incorrect lengths;
for single-word answers this is equivalent to the
answer’s string length (e.g. 4 for BALL), while with
answers composed of multiple words we consider
both the total length of the concatenated words
as well as the individual word lengths (e.g. 10
and 4,2,4 respectively for CAFE-AU-LAIT). If the
clue is an anagram we ignore words that are not

permutations of the clue’s letters. This chain of
filters yields a list of compliant candidate answers,
which we rank by the cosine distance from the clue
representation as before.

For certain entries in the crosswords, the clue
may contain two or more gloss sets. In such situa-
tions the model performs an individual lookup on
each gloss set, retrieving the respective rankings of
tokens ordered by cosine similarity with the head
token. The model then computes the mean cosine
similarity for each candidate solution across the
lists, re-ranking the candidate solutions in descend-
ing order of mean score. We hypothesise this will
strengthen the model’s performance on solutions
corresponding to homonyms (words with multiple
meanings depending on context).

After the final list of candidate answers is com-
puted, we may derive the quality metrics and error
statistics as described for the baseline model. In
Section 3, we denote the NBOW-based models ac-
cording to the number of constraint filters imposed
on the list of candidate answers. The constraints
identified in Table 1 respectively ensure that 1) can-
didate heads have the correct length, 2) gloss words
are excluded, 3) non-anagrams are excluded, 4) can-
didates incompatible with each gloss are excluded
(where multiple clue sets are given), 5) British En-
glish spellings are assigned the same embedding
vectors as the equivalent American English spelling
and 6) multiple-word answers are included.



(a) Unidirectional LSTM with Fully-Connected
Layer

(b) Unidirectional LSTM with Fully-Connected
Layer and Mean Pooling

Figure 2: LSTM Architectures

Figure 3: Prediction Generation

2.4 LSTM Models

Inspired by the family of models introduced in
Hill et al. (2016), we first consider a unidirectional
LSTM that accepts gloss token embeddings as in-
put and yields an output embedding (Figure 2(a)),
then identifies the nearest neighbour in the embed-
ding space as the predicted head token (Figure 3).
The model relies on the pre-trained Word2Vec em-
beddings identified in Section 2.2 to encode both
the head and gloss tokens, as well as to decode
the predicted embedding vector. We use the co-
sine loss cos(h, ĥ) = 1 − h·ĥ

‖h‖‖ĥ‖
as the objective

function, as we seek to minimise the angular dif-
ference between the predicted output’s embedding
ĥ and the true head’s embedding h. The general
approach is similar to that considered in the previ-
ous section, but with an RNN architecture used to
accumulate tokens into a single vector instead of
the mean pooling operation σ̄n.

For comparison we investigate the unidirectional
LSTM presented in Parry (2018), depicted in Fig-
ure 2(b) (LSTM-U). The key differences with the
previous LSTM architecture are a) mean pool-
ing over the entire set of output vectors instead
of using only the final stage’s output vector, b)
the gloss embeddings are learned in training in-
stead of using pre-trained embeddings, and c) 100-

dimensional word embeddings were used instead
of 300-dimensional word embeddings. Parry pos-
tulates that this introduces an indirect bias towards
earlier tokens in the input sequence, and can thus
improve the quality of the predicted embedding.

Finally we also consider the bidirectional LSTM
architecture (LSTM-B) from Parry (2018), which
concatenates the final output vectors of forward
and backward LSTM cell chains to yield the pre-
dicted embedding vector. We hypothesise that this
could improve model performance by detecting
sequential relations between gloss tokens.

3 Results

We present experimental results in Table 2 and
report the following metrics:

• Correct at 1 (C@1): the number of clues for
which the correct answer is identified as the
top candidate answer;

• Median rank (MR) of the correct answer in
list of candidate answers retrieved;

• Accuracy at 10 and 100 (A@10, A@100):
the percentage of clues for which the correct
answer is in the top 10 and 100 candidate
answers respectively.

• Duration of test evaluation for the BOW mod-
els, in minutes.

As expected, the baseline model BOW-0 is the
fastest model to evaluate. However, it achieves the



Model C@1 MR A@10 / % A@100 / % Duration / min
BOW-0 0 43 10.34 23.77 83
BOW-1 1110 14 29.21 47.22 84
BOW-2 1449 13 29.72 47.25 111
BOW-3 1490 13 30.01 47.46 122
BOW-4 1494 11 29.47 45.81 155
BOW-5 1501 11 29.75 46.23 173
BOW-6 1502 13 30.39 48.02 155
BOW-7 1636 11 32.58 50.86 175
BOW-8 1618 13 32.93 52.54 145
LSTM-U 1361 274.5 25.00 42.20 —
LSTM-B 1304 440.5 23.80 39.40 —

Table 2: Results of Baseline, Enhanced NBOW and LSTM Models

lowest performance on all metrics, with no correct
candidates at rank 1, median rank of 43, accuracy
at 10 of 10.34% and accuracy at 100 of 23.77%.
As more constraints are introduced, model per-
formance on each metric generally improves but
model evaluation becomes slower. When all con-
straint filters are included, BOW-7 achieves the best
performance on the number of correct candidates
at rank 1 and the median rank of the correct an-
swer, albeit with the longest duration to evaluate.
In contrast BOW-8 (which does not divide clues
with multiple definitions into individual gloss sets)
achieves the best results for accuracy at 10 and at
100 (32.93% and 52.54% respectively) in a signifi-
cantly shorter time than BOW-7.

The initial LSTM model that we developed
yielded poor performance results with an accuracy
at 100 of 0.3%. The unidirectional LSTM model
with output mean pooling from Parry (2018) per-
forms better than the bidirectional LSTM model
on all metrics. However, both are outperformed
by nearly all of the BOW models (BOW-2 through
BOW-8).

4 Discussion

4.1 Comparison of BOW and LSTM Models

When evaluated on a test set of 500 crossword
puzzles, the best-performing models are BOW-7
and BOW-8, outperforming both the unidirectional
LSTM-U and bidirectional LSTM-B models from
Parry (2018). While LSTM-U and LSTM-B may
achieve a higher number of correct predictions at
rank 1 than BOW-1, they achieve lower perfor-
mance on all other metrics, performing particularly
worse on the median rank. Low median rank sug-

gests that the LSTM models predict the rank of the
correct head either very well or very poorly (hence
the worse accuracy at ranks 10 and 100). This phe-
nomenon is likely to have been exacerbated by the
models’ training conditions: LSTM-U and LSTM-B
were both trained for ten epochs due to computa-
tional resource limitations, however it is likely that
performance on the validation set would improve
further if the LSTM models were trained for more
epochs.

Nonetheless, given these results, the LSTM ar-
chitectures may be unnecessarily complex when
compared with the NBOW models. The relatively
short lengths of token sequences involved in gen-
eral knowledge crossword clues do not require so-
phisticated infrastructure for learning and tracking
long-term dependencies between gloss words, so a
simple NBOW model may suffice.3 Despite using
a different evaluation methodology the results of
Hill et al. (2016) appear to confirm that NBOW
models perform better than RNN-based models on
the crossword clue resolution task.

4.2 BOW Model Choices

Among the NBOW models, the best performing
models both used the first three filters (length, gloss
words, anagrams) and the last two filters (British
English spellings and multiple-word answers). The
first three serve to eliminate incorrect candidates,
while the last two compensate for the idiosyn-
crasies of the pre-trained Word2Vec model with
respect to certain true heads. Notably using the
fourth filter (filtering by multiple gloss sets) does
not improve all performance metrics. For BOW-7

3For this reason we explicitly ruled out exploring attention-
based models for this task.



the number of correctly predicted heads at rank
1 and the median rank is slightly higher than for
BOW-8, however for an analogous pair of models
(BOW-5 and BOW-6) only median rank improves
when this filter is applied. This may be due to the
ineffectiveness of the filter in the presence of clues
comprised of more than two synonyms. In these
cases there are increasing numbers of lists over
which a common intersection of words must be
found, thus making it more likely that the correct
answer candidate could be eliminated during this
process. In addition, model evaluation is signifi-
cantly longer for models using this filter, hence it
is of negligible practical benefit to apply this filter.

4.3 LSTM Model Choices

Our initial attempt at implementing a unidirectional
LSTM performed poorly. We speculate that this
was because pre-trained embeddings were used for
the gloss token representations, as opposed to learn-
ing the gloss embeddings. Both Hill et al. (2016)
and Parry (2018) train input embeddings on a var-
ied collection of information sources, including
cryptic clues, dictionary definitions and Wikipedia
article abstracts. This likely enhances a model’s
lexical range and explains their models’ improved
performance on general knowledge clues.

5 Conclusions

5.1 Summary of Results

In this paper we have investigated two classes of
models for the automated solving of crossword
puzzles: NBOW and RNN. We found that even
the simplest NBOW implementations matched the
performance of RNNs in most metrics, whereas
NBOW models designed to take into consideration
extra constraints significantly outperformed RNNs
in our experiments. This combined with the shorter
evaluation times and absence of training required
to develop NBOW models makes it the superior
choice for solving crosswords.

The short lengths of typical crossword clues sug-
gests that order-dependence is not important when
making predictions, which goes at least some way
to explain why the LSTM-based models do not
overwhelmingly outperform the NBOW models.

We were limited in our experiments to only train-
ing the LSTMs for 10 epochs each, due to the time
required to make batch predictions. The accuracy
achieved improved on each epoch and showed no
obvious signs of slowing. Given greater computa-

tional resources it would be interesting to repeat
our experiments with the LSTMs trained for more
epochs, and check whether the model parameters
rapidly converge to a limit or if performance sur-
passes that of bag-of-words within a reasonable
number of epochs.

5.2 Extensions
In this report we have focused on predicting the so-
lutions to individual entries in a crossword puzzle.
Additional constraints can be enforced by consider-
ing the intersections between entries. For example
in Figure 1, entry 14 across (‘POTION’) intersects
three other entries:

• entry 12 down (‘GOD-AWFUL’)

• entry 6 down (‘RE-EXAMINATION’)

• entry 7 down (‘SESSION’)

Often these intersections are crucial in forcing a
unique solution to a crossword puzzle, particularly
in cases where a single clue admits multiple syn-
onyms of the same length. More formally, these
intersections introduce strong conditional depen-
dencies between entries, where definite knowledge
of one solution rules out a class of possible solu-
tions for the entries it intersects. A simple way to
model these dependencies is through using a di-
rected acyclic graph: letting the entries in a cross-
word puzzle be denoted by x1, . . . , xn, where we
admit an arbitrary ordering of the entries amongst
xi, we can construct a suitable graphical model as
follows:

• For each index i from 1 to n in turn:

• Find the maximal set of entries Si ⊆
{x1, . . . , xi−1} such that every y ∈ Si inter-
sects xi at one or more tile(s)

• Form arrows between the entries y ∈ Si and
xi, directed from y to xi

If we choose an ordering whereby the entries {xi}
in the across direction are ordered earlier in the se-
quence than the entries {xj} in the down direction,
then this procedure typically simplifies to intro-
ducing dependencies xj | {xi′} for the subset of
entries xi′ ∈ {xi} intersecting xj .4 Following this

4Note that in some quick crossword puzzles from The
Guardian, one set of tiles can be shared between multiple
entries in the same direction. For example, in quick cross-
word no. 10,873 the word ‘PAPER’ is shared between the two
separate answers ‘GREEN PAPER’ and ‘WHITE PAPER’.



principle for the example crossword in Figure 1, a
factor P (x1 down |x1 across, x8 across, x10 across) is in-
troduced for the first entry in the down direction,
among others. When evaluating the model on a
crossword puzzle, this would correspond to first
generating predictions for all entries in the across
direction, and then generating predictions for all
entries in the down direction making use of the tiles
already completed.

An important requisite for this technique is that
the estimated probability distributions P (xi) on in-
dividual entries are close to ground truth, so that
good choices are made for the conditional distri-
butions P (xi |Si) which can be heavily dependent
on Si. If the model often makes incorrect predic-
tions on individual entries, then in fact imposing
the intersections between words can decrease over-
all accuracy, by ruling out correct solutions from
ever being selected. We have opted not to pursue
this line of inquiry here, as our models’ accuracies
on individual entries did not reach a sufficiently
high level. For a treatment of automated cross-
word solvers where the effects of intersections are
imposed, see Littman et al. (2002) (cf. constraint
satisfaction).

As another possible extension to our work, we
note that we have only considered a single word
embedding function, namely the Word2Vec model
pre-trained on the Google News corpus, specified
in Mikolov et al. (2013). While providing good
baseline performance across a number of disparate
tasks (Baroni et al., 2014), this model does have
several flaws when applied to crosswords.

First, Word2Vec by default does not handle
homonyms particularly well. Words which are
spelt the same but have different meanings, rather
than being represented as distinct vectors, are
collapsed into a single vector in the embedding
space. This is problematic for synonymous clues
in crosswords, which typically are between one
and four words in length making disambiguation
of homonyms from context difficult. This short-
coming is addressed in AdaGram (Bartunov et al.,
2016), an extension of Word2Vec’s skip-gram
model that supports multiple meanings for a sin-
gle word. Using AdaGram it would be possible to
return a ranking of solutions under each possible
sense of the clue words, providing a bigger pool
of likely candidate answers and thereby improving
the median ranks of the models’ predictions.

Second, Word2Vec has a limited vocabulary and

is unable to recognise certain clue words and solu-
tions from The Guardian quick crosswords. Clue
words can be handled by simply being ignored if
missing from the vocabulary, although handling
solutions is slightly more involved. The approach
taken in Ernandes et al. (2005) is to predict heads
missing from the vocabulary using a joint proba-
bility over tetragrams, estimated from the corpus
of crossword answers, and maximising this prob-
ability over known characters imposed by other
solutions. We propose that an alternative would
be to use fastText (Bojanowski et al., 2016) as the
embedding model. Instead of grouping together
words that appear in the same contexts by assign-
ing vectors with high cosine similarities, fastText
groups together character n-grams appearing in
the same contexts. This can be employed when
making predictions from clue words by consider-
ing all the candidate words returned and forming
valid tokens from the most probable n-grams. For
instance, this could be used to predict the solu-
tion ‘WHALING’ even if the word does not ap-
pear in the embedding space vocabulary, given that
1) ‘WHALE’ does appear in the vocabulary and 2)
it’s returned as a highly-ranked synonym of the
clue words (e.g. ‘CATCHING AQUATIC MAM-
MAL WITH HARPOON’), by virtue of combining
the tetragrams ‘WHAL’ and ‘LING’.

A final extension that could be considered is
adding a decoder to the RNN architecture. An
encoder-decoder LSTM functions by first combin-
ing a sequence of tokens into a single vector rep-
resentation (referred to as the encoder), and then
converting the vector back into a new sequence of
predicted tokens (the decoder), not necessarily the
same length as the original sequence (Cho et al.,
2014). This could facilitate handling of unseen
multiple-word answers, which are not supported
by the encoder-only LSTM architecture. We can
thus draw on a wider vocabulary than that of the
pre-trained language models.



Acknowledgments

The authors wish to thank Guardian News & Me-
dia Ltd. for their permission to re-use crosswords
10,000–15,000 under their Open Licence scheme,
and Jack Parry for repository access and helpful
insights into his LSTM model implementations.

References
Gianni Barlacchi, Massimo Nicosia, and Alessandro

Moschitti. 2014a. Learning to rank answer candi-
dates for automatic resolution of crossword puzzles.
In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning, pages
39–48.

Gianni Barlacchi, Massimo Nicosia, and Alessandro
Moschitti. 2014b. A retrieval model for automatic
resolution of crossword puzzles in italian language.
In The First Italian Conference on Computational
Linguistics CLiC-it 2014, page 33.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict a sys-
tematic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics, pages 238–247.

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry P. Vetrov. 2016. Breaking sticks and am-
biguities with adaptive skip-gram. In Proceedings
of the 19th International Conference on Artificial In-
telligence and Statistics (AISTATS), pages 130–138.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. arXiv:1607.04606v2.

Kyunghyun Cho, Bart van Merri enboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734.

Marco Ernandes, Giovanni Angelini, and Marco Gori.
2005. Webcrow: A web-based system for crossword
solving. In AAAI, pages 1412–1417.

Sam Hage. 2016. Regis fillbin: A crossword puzzle
solver. Master’s thesis, Middlebury College.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics,
4:17–30.

AR Jobin, Anand G Menon, Ashwin Sekhar, and
Vinay Damodaran. 2017. Key to crossword solv-
ing: Nlp. In 2017 International Conference on Ad-
vances in Computing, Communications and Infor-
matics (ICACCI), pages 929–933. IEEE.

Aditya Kalyanpur, Branimir K Boguraev, Siddharth
Patwardhan, J William Murdock, et al. 2012. Struc-
tured data and inference in deepqa. IBM Journal of
Research and Development, 56(3.4):10–1.

Michael L Littman, Greg A Keim, and Noam Shazeer.
2002. A probabilistic approach to solving crossword
puzzles. Artificial Intelligence, 134(1-2):23–55.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Alessandro Moschitti, Massimo Nicosia, and Gianni
Barlacchi. 2015. Sacry: Syntax-based automatic
crossword puzzle resolution system. In Proceed-
ings of ACL-IJCNLP 2015 System Demonstrations,
pages 79–84.

Massimo Nicosia, Gianni Barlacchi, and Alessandro
Moschitti. 2015. Learning to rank aggregated an-
swers for crossword puzzles. In European Con-
ference on Information Retrieval, pages 556–561.
Springer.

Massimo Nicosia and Alessandro Moschitti. 2016.
Crossword puzzle resolution in italian using distri-
butional models for clue similarity. In IIR.

Jack Parry. 2018. Finding the answers with definition
models. arXiv preprint arXiv:1809.00224.

Titus DM Purdin and Geoff Harris. 1993. A genetic-
algorithm approach to solving crossword puzzles. In
Proceedings of the 1993 ACM/SIGAPP symposium
on Applied computing: states of the art and practice,
pages 263–270.

Dragomir Radev, Rui Zhang, Steve Wilson, Derek
Van Assche, Henrique Spyra Gubert, Alisa Kri-
vokapic, MeiXing Dong, Chongruo Wu, Spruce
Bondera, Luke Brandl, et al. 2016. Cruciform: Solv-
ing crosswords with natural language processing.
arXiv preprint arXiv:1611.02360.

Aliaksei Severyn, Massimo Nicosia, Gianni Barlacchi,
and Alessandro Moschitti. 2015. Distributional neu-
ral networks for automatic resolution of crossword
puzzles. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 199–204.

Noam M Shazeer, Michael L Littman, and Greg A
Keim. 1999. Solving crossword puzzles as proba-
bilistic constraint satisfaction. In AAAI/IAAI, pages
156–162.

https://syndication.theguardian.com/open-licence-terms/
https://github.com/Jack-Paz/DEFINITION_MODEL

