
Domain Adaptation through Adversarial
Training of Albert for Aspect-based Sentiment

Analysis
Supervisor: Lianlian Qi

Daniel Atticus Williams1

19031356

Submission date: 11 September 2020

1Disclaimer: This report is submitted in partial fulfillment of the requirements for the degree
of the Master of Science of Machine Learning at UCL. It is substantially the result of my own work
except where explicitly indicated in the text.
The report will be distributed to the internal and external examiners, but thereafter may not be
copied or distributed except with permission from the author.

mailto:ucabdaw@ucl.ac.uk

Abstract

This project involves the application of the Albert language model to the problem of aspect-

based sentiment analysis (ABSA). Driven by an expansion in the use of online reviews, an

established body of research into sentiment analysis of review targets (e.g. restaurants) has

motivated the study of finer-grained target aspects (e.g. restaurant service, ambiance). With

the advent of transformer-based neural network architectures such as BERT, resulting gains

in performance have required significantly high usage of computational resources. A recent

transformer model called Albert has shown competitive performance on benchmark language

tasks with a much smaller memory footprint than BERT-based competitors. The goal of

this project has been to investigate the performance of Albert on ABSA tasks such as aspect

extraction (AE), aspect sentiment classification (ASC), and end-to-end ABSA (E2E-ABSA).

Our achievements are fourfold. First, we have adapted an adversarial training framework

for ABSA tasks, substituting the smallest Albert model for further pre-trained BERT models.

In addition, for E2E-ABSA we have adapted existing English and Mandarin datasets to use

a consistent and unified tagging scheme. Using optimized hyperparameters with variants

of our novel Albat architecture, we have achieved state of the art performance on all E2E-

ABSA metrics, two AE metrics, and one ASC metric. Furthermore, on four AE metrics and

four ASC metrics the optimized Albat model variants demonstrate competitive performance

regarding the state of the art.

Acknowledgements

I would like to express my deep gratitude to my academic supervisor Lianlian Qi for her

guidance in this project. Her wisdom and patience throughout the year have been tremendous

and invaluable. I am also grateful to Dr Zafeirios Fountas for his generous and most helpful

feedback concerning chapters of this report.

Ultimately I must thank my parents for their inexhaustible encouragement and support

over this year. You have always spurred me on to do my best.

1

Contents

List of Figures 5

List of Tables 7

1 Introduction 9

2 Literature Review 11

2.1 ABSA . 11

2.2 ABSA Approaches . 12

2.2.1 Information Retrieval Systems . 12

2.2.2 Machine Learning Systems . 12

2.3 BERT for ABSA . 15

2.3.1 Overview . 15

2.3.2 Training Procedures . 17

2.3.3 Training Data . 20

2.3.4 Computational Considerations . 20

2.4 Datasets for ABSA . 22

3 Design 25

3.1 Problem Formulation . 25

3.2 Solution Design . 26

3.2.1 Albat . 26

3.2.2 Albat-PT . 29

2

4 Results 30

4.1 Experimental Setup . 30

4.1.1 Implementation . 30

4.1.2 Data . 31

4.1.3 Models . 34

4.2 Albat with One-Layer Classifier . 35

4.2.1 Hyperparameter Tuning . 35

4.2.2 Optimized Model Results . 37

4.3 Albat with Two-Layer Classifier . 38

4.3.1 Hyperparameter Tuning . 38

4.3.2 Optimized Model Results . 41

4.4 Albat with Three-Layer Classifier . 42

4.4.1 Hyperparameter Tuning . 42

4.4.2 Optimized Model Results . 46

4.5 Albat with Further Pre-training . 47

4.5.1 Albat-1LC . 47

4.5.2 Albat-2LC . 48

4.5.3 Albat-3LC . 49

5 Discussion 51

5.1 Model Performance . 51

5.1.1 Metrics . 51

5.1.2 E2E-ABSA . 55

5.1.3 AE . 56

5.1.4 ASC . 59

5.1.5 Case Study . 65

5.1.6 Confusion Matrices . 69

5.1.7 Further Pre-Training . 77

5.2 Resource Usage . 78

3

6 Conclusions 84

6.1 Summary . 84

6.2 Contributions . 85

6.3 Future Work . 85

A Abbreviations Glossary 87

B E2E-ABSA Literature: F1 Score Averaging Method 89

C Classification Performance Metrics 90

C.1 Binary Classification Metrics . 90

C.2 Multi-class Classification Metrics . 91

Bibliography 93

4

List of Figures

2.1 BERTBASE Architecture [1, 2] . 16

2.2 Overview of BERT Pre-Training [3] . 17

2.3 BERT Pre-Training Tasks . 18

2.4 Fine-tuning [3] . 19

2.5 Parameter Sharing [4] . 21

2.6 Embedding Matrices . 21

2.7 Sentence Order Prediction [4] . 22

3.1 Albat Model Overview (with a One-Layer Classifier) 26

5.1 Performance Comparison with State of the Art for E2E-ABSA on Lapt14

(Accuracy) . 55

5.2 Performance Comparison with State of the Art for E2E-ABSA on Unified

(Accuracy) . 55

5.3 Performance Comparison with State of the Art for AE on Lapt14 (F1 Score) 56

5.4 Performance Comparison with State of the Art for AE on Rest14 (F1 Score) 56

5.5 Performance Comparison with State of the Art for AE on Camera (F1 Score) 57

5.6 Performance Comparison with State of the Art for AE on Car (F1 Score) . . 57

5.7 Performance Comparison with State of the Art for AE on Notebook (F1 Score) 58

5.8 Performance Comparison with State of the Art for AE on Phone (F1 Score) . 58

5.9 Performance Comparison with State of the Art for ASC on Lapt14 (Accuracy) 59

5.10 Performance Comparison with State of the Art for ASC on Lapt14 (Macro-

averaged F1 Score) . 59

5.11 Performance Comparison with State of the Art for ASC on Rest14 (Accuracy) 60

5.12 Performance Comparison with State of the Art for ASC on Rest14 (Macro-

averaged F1 Score) . 60

5

5.13 Performance Comparison with State of the Art for ASC on Camera (Accuracy) 61

5.14 Performance Comparison with State of the Art for ASC on Camera (Macro-

averaged F1 Score) . 61

5.15 Performance Comparison with State of the Art for ASC on Car (Accuracy) . 62

5.16 Performance Comparison with State of the Art for ASC on Car (Macro-

averaged F1 Score) . 62

5.17 Performance Comparison with State of the Art for ASC on Notebook (Accuracy) 63

5.18 Performance Comparison with State of the Art for ASC on Notebook (Macro-

averaged F1 Score) . 63

5.19 Performance Comparison with State of the Art for ASC on Phone (Accuracy) 64

5.20 Performance Comparison with State of the Art for ASC on Phone (Macro-

averaged F1 Score) . 64

5.21 Performance Comparison with State of the Art for ASC on MAMS (Accuracy) 65

5.22 Confusion Matrix for Sample Review (Albat-1LC) 67

5.23 Confusion Matrix for Sample Review (Albat-2LC) 68

5.24 Confusion Matrix for Sample Review (Albat-3LC) 68

5.25 Confusion Matrices for Lapt14 . 69

5.26 Confusion Matrices for Rest14 . 70

5.27 Confusion Matrices for Unified . 71

5.28 Confusion Matrices for MAMS . 72

5.29 Confusion Matrices for Camera . 73

5.30 Confusion Matrices for Car . 74

5.31 Confusion Matrices for Notebook . 75

5.32 Confusion Matrices for Phone . 76

5.33 Trainable Parameters for BAT and Albat . 79

5.34 Size of Trained Models for BAT and Albat 80

5.35 Training Duration for BAT and Albat Models (AE) 81

5.36 Training Duration for BAT and Albat Models (ASC) 82

5.37 Training Duration for BAT and Albat Models (E2E-ABSA) 83

B.1 Email Correspondence with Mr. Xin Li . 89

6

List of Tables

2.1 Attributes of Main ABSA Datasets . 23

4.1 SemEval-2014 Laptop Dataset Properties . 31

4.2 SemEval-2014 Restaurant Dataset Properties 32

4.3 Unified Dataset Properties . 32

4.4 MAMS Dataset Properties . 32

4.5 Camera Dataset Properties . 33

4.6 Car Dataset Properties . 33

4.7 Notebook Dataset Properties . 33

4.8 Phone Dataset Properties . 33

4.9 Influence of Dropout Rate on Albat-1LC Performance 35

4.10 Influence of Perturbation Size on Albat-1LC Performance 36

4.11 Influence of Weight Decay Constant on Albat-1LC Performance 36

4.12 Performance of Albat-1LC using Optimized Hyperparameters 37

4.13 Influence of Perturbation Size on Albat-2LC Performance (without ReLU) . 38

4.14 Influence of Perturbation Size on Albat-2LC Performance (using ReLU) . . . 38

4.15 Influence of Weight Decay Constant on Albat-2LC Performance (without ReLU) 39

4.16 Influence of Weight Decay Constant on Albat-2LC Performance (using ReLU) 39

4.17 Influence of First Classification Layer Output Dimension on Albat-2LC Per-

formance (without ReLU) . 40

4.18 Influence of First Classification Layer Output Dimension on Albat-2LC Per-

formance (using ReLU) . 40

4.19 Performance of Albat-2LC using Optimized Hyperparameters 41

4.20 Influence of Perturbation Size on Albat-3LC Performance (without ReLU) . 42

7

4.21 Influence of Perturbation Size on Albat-3LC Performance (using ReLU) . . . 42

4.22 Influence of Weight Decay Constant on Albat-3LC Performance (without ReLU) 43

4.23 Influence of Weight Decay Constant on Albat-3LC Performance (using ReLU) 43

4.24 Influence of First Classification Layer Output Dimension on Albat-3LC Per-

formance (without ReLU) . 44

4.25 Influence of First Classification Layer Output Dimension on Albat-3LC Per-

formance (using ReLU) . 44

4.26 Influence of Second Classification Layer Output Dimension on Albat-3LC Per-

formance (without ReLU) . 45

4.27 Influence of Second Classification Layer Output Dimension on Albat-3LC Per-

formance (using ReLU) . 45

4.28 Performance of Albat-3LC using Optimized Hyperparameters 46

4.29 Performance of Albat-1LC (PT using 1% Data for 1 Epoch) 47

4.30 Performance of Albat-1LC (PT using 1% Data for 4 Epochs) 47

4.31 Performance of Albat-1LC (PT using 5% Data for 1 Epoch) 48

4.32 Performance of Albat-1LC (PT using 5% Data for 2 Epochs) 48

4.33 Performance of Albat-2LC (PT using 1% Data for 1 Epoch) 49

4.34 Performance of Albat-2LC (PT using 1% Data for 4 Epochs) 49

4.35 Performance of Albat-2LC (PT using 5% Data for 1 Epoch) 49

4.36 Performance of Albat-2LC (PT using 5% Data for 2 Epochs) 49

4.37 Performance of Albat-3LC (PT using 1% Data for 1 Epoch) 50

4.38 Performance of Albat-3LC (PT using 1% Data for 4 Epochs) 50

4.39 Performance of Albat-3LC (PT using 5% Data for 1 Epoch) 50

4.40 Performance of Albat-3LC (PT using 5% Data for 2 Epochs) 50

8

Chapter 1

Introduction

With ubiquitous access to the Internet, members of the public increasingly share personal

testimonials about goods and services on online review platforms. Due to the increasing

volume of such reviews, there has been rising interest in automated sentiment analysis in-

volving authors’ opinions of review targets. This has created a burgeoning field of research

in sentiment analysis of review texts.

Although most approaches have concentrated on an author’s overall opinion of a review

target (e.g. a specific restaurant), a growing area of research known as aspect-based sentiment

analysis (ABSA) concentrates on detecting sentiments towards finer-grained aspects of review

targets (e.g. the quality of service or ambiance of a restaurant). The advent of deep neural

networks, particularly transformer architectures, has enabled the development of robust

systems for ABSA tasks. Notably the transformer-based BERT architecture [2] has been

applied successfully to ABSA. While much recent research has been conducted on improving

the performance of BERT on ABSA tasks, BERT’s relatively slow and memory-intensive

training procedure is disadvantageous. Newer transformer-based models such as Albert [5]

have sought to overcome these limitations by using smaller models with fewer parameters.

The application of these transformer-based models to ABSA could therefore lead to faster

training and better performance.

Motivated by these prospects, our project has focused on applying the Albert language

model to ABSA. Our primary goal has been to integrate an adversarial training method with

Albert in order to perform E2E-ABSA and other ABSA tasks.

We begin in Chapter 2 with a survey of ABSA literature, addressing both information

retrieval and machine learning-based approaches, with the use of BERT in ABSA examined

comprehensively. In Chapter 3 we formulate learning problems for three ABSA tasks and

propose an adversarially trained Albert-based architecture called Albat. We present the

9

details of implementing Albat in Chapter 4 and perform hyperparameter optimization for

three Albat model variants. Using these hyperparameter settings we then evaluate the

performance on four datasets. Inspired by similar approaches with BERT for ABSA, we also

pre-train Albert further using an online review corpus and evaluate its performance using

the three Albat model variants. In Chapter 5 we discuss the experimental outcomes with

comparisons to relevant literature results, a case study of a single review, analysis of frequent

errors, and a study of the resource usage by the three Albat model variants. We conclude

in Chapter 6 with a reflection on the contributions of this investigation to the literature and

present a number of directions for future research.

10

Chapter 2

Literature Review

In this chapter we survey the literature relating to ABSA, with a particular focus on deep

neural network approaches. We also discuss commonly-used datasets used to train and

evaluate performance on ABSA tasks.

2.1 ABSA

As an instance of the text classification problem, sentiment analysis seeks to identify and

classify an author’s sentiment towards opinion targets in text, drawing on vocabulary from

a specific domain (e.g. laptop computers, restaurants) [6]. ABSA considers the sentiment

conveyed at a phrasal level regarding aspects of the opinion target. Such aspects may be

terms (battery life, screen size for a laptop computer), categories (service or price for a

restaurant) or a mix of the two. Aspects may be explicitly mentioned in the source text or

implicitly inferred using domain-based knowledge [7].

We can deconstruct the ABSA problem into distinct tasks [8]:

• aspect extraction (AE),

• aspect sentiment classification (ASC),

• aspect sentiment evolution (ASE).

AE involves the identification of explicit or implicit aspects of opinion targets in text [7].

While it is common to focus only on aspects (either terms or categories [8]), in [9] the authors

go even further to distinguish between the extraction of opinion target entities, the extraction

of the corresponding aspects, and the joint extraction of opinion targets and aspects.

11

When given a set of opinion targets and aspects, ASC assigns a polarity to aspects in

text. This is often described as positive, negative, or neutral [10]. Where a text contains mul-

tiple aspects for an opinion target, one may also generate an overall sentiment (consistently

positive, negative or neutral, or conflicting [11]). By using ASC with text fragments over

time, ASE monitors how an author’s sentiment towards an opinion target and its aspects

evolves [7].

Most papers concentrate exclusively either on the AE or ASC subtasks [8], however recent

research integrates AE and ASC in order to implement end-to-end aspect-based sentiment

analysis (E2E-ABSA) [12–15]. In contrast with ASC per se, E2E-ABSA does not require

texts with pre-labelled aspects. For deep neural network-based architectures in particular,

joint training of an aspect tagger and sentiment classifier may also have a regularizing effect

due to parameter sharing in lower layers, leading to more robust model performance [7].

2.2 ABSA Approaches

Several approaches to ABSA have been pursued in recent years. These may be broadly

categorized into information retrieval systems and machine learning-based systems [8].

2.2.1 Information Retrieval Systems

As a common preliminary step, several models tokenize text and extract feature vectors

for use with subsequent classifiers [16–18]. Much attention has focused on generating a

polarity lexicon (a dictionary of words with known polarity) to classify text sentiment [18–22].

Other classifiers include graphical models such as conditional random fields [16], traditional

supervised learning models such as support vector machines [16,21], and deep neural networks

[17, 20]. To overcome a dependency on labeled training data, an alternative approach using

topic models for AE and ASC has been explored in [22].

2.2.2 Machine Learning Systems

A major limitation of information retrieval ABSA systems is their reliance on manual feature

extraction and engineering [6]. Driven by advances in the use of deep learning for natural

language processing (NLP), deep neural networks have come to dominate current approaches

to ABSA. These architectures may be further classified as follows, with numerous hybrids:

• recursive and recurrent neural networks,

12

• convolutional neural networks and capsule networks,

• memory networks,

• attention networks,

• transformer-based networks.

Recursive and Recurrent Neural Networks

A recursive neural network (RvNN) considers a sentence’s syntactic structures explicitly in

order to learn a tree representation of the text [23]. This representation may then be used

for effective AE and ASC, but the training process is computationally expensive [6]. In [23]

an RvNN is used to identify aspect terms, while in [24] the relational information embedded

in the syntactic tree aids ASC.

A conceptually simpler variant of RvNN is the recurrent neural network (RNN) [6]. In an

RNN input segments (usually corresponding to tokenized sentences) are fed in sequentially.

At each time step the RNN cell performs a non-linear operation on the current input segment

and the cell’s previous state. The model can thus learn to detect sequential patterns in data,

including natural language. Deep RNNs are suitable for sequence tagging in AE and ASC

because of their short latency in generating predictions at inference time [25]. Due to the

practical difficulties of capturing relations between distantly-separated input segments using

RNNs, both [23] and [24] include structural information from an RvNN.

RNN variants such as the long short-term memory network (LSTM) and gated recurrent

unit (GRU) are less affected by the practical issues of exploding or vanishing gradients during

model training [6]. Both LSTMs and GRUs may be enhanced with downstream layers [26],

bi-directional architectures to better capture forward and backward dependencies between

tokens in a sentence [10], or non-linear gating functions and an attention mechanism to

extract features from the encoded input representation [27,28].

Convolutional Neural Networks and Capsule Networks

As effective pattern detectors, convolutional neural networks (CNN) have been increasingly

applied to natural language problems such as ABSA [6]. CNNs require the input text to

be converted into a numerical representation, either through pre-trained word embeddings

or engineered feature vectors. The inputs are then fed through a sequence of convolutional

operations followed by non-linear pooling methods (such as max pooling) in order to extract

and process progressively higher-level features. Certain models have addressed AE [29, 30]

13

and ASC [31–33] individually, whereas subsequent models have favored an end-to-end ap-

proach [15, 34–36]. In particular, the model in [35] employs a routing scheme to transfer

relational information for three end tasks (AE, ASC, and target extraction) among the

corresponding task-specific CNN layers. We may also consider incorporating structural in-

formation from a text’s dependency tree, combining a graph-based CNN with a CNN encoder

and downstream task-specific layers [33,36].

To integrate aspect information with the input sentence representation, we may place a

gating function immediately after the input encoder layer, consisting of Hadamard multi-

plication and sigmoid units [28] or ReLU and tanh units [30, 32]. In [37] this approach is

extended by using a final attention layer instead of a max pooling layer. By relying on fewer

parameters than a transformer-based model this approach can better handle computational

resource constraints.

While the CNN architecture can effectively extract features from different layers, the

use of pooling operations leads to spatial information loss [38]. To overcome such problems

a capsule network uses abstract vector representations of neuron groups that encode the

likelihood of an entity existing and its attributes, transforming this information from input

to output [39]. Capsule networks have been successfully used for text classification [40] and

ASC [17,41,42]. Of particular note: capsule networks may be employed to transfer semantic

knowledge from the document level to the sentence level [41] and may be used in conjunction

with attention mechanisms [42].

Memory Networks

Memory networks contain a cache of external memory which a deep neural network model

can access and modify [38]. This architecture has been applied to ASC [20, 43], with some

models combining memory networks with attention mechanisms [23,44].

Attention Networks

Motivated by the concept of attention in humans, an attention mechanism extracts important

features from sequential data while ignoring irrelevant information [6]. Attention is often

combined with CNNs [15] or RNN architectures such as the LSTM [45–47] or GRU [48]

to enhance the base model’s performance, however networks based primarily on attention

module units have become increasingly prominent in ABSA [48–54].

Among the attention-based approaches to ABSA, several models draw inspiration from

other deep learning architectures. In [55] an attention module based on the radial basis

14

kernel was used to perform fast AE. As discussed for RNN architectures, gating functions

may further extract features from an attention network’s output [56], while bi-directional

attention networks may better detect the influence of previous and future tokens on the

present token [52]. Similar to graph convolution networks, graph attention networks in-

corporate structural information from the input’s dependency tree [57–59]. Models with

multiple attention modules in parallel (multi-head self-attention, or MHSA) appear to per-

form more effectively than serial attention networks [38], raising interest in their application

to ABSA [48–51].

Transformer-based Networks

An extension of the MHSA concept, transformers calculate a self-attention score for each

input token to determine the influence on neighboring tokens [38]. The parallel nature of

these operations presents a computational advantage over RNNs and CNNs when handling

long sentences. This has led to a proliferation of transformer-based models for NLP appli-

cations, with the most prominent being pre-trained language models such as OpenGPT [60]

and BERT [2]. Since most new approaches to ABSA have concentrated on exploring the

capabilities of BERT, we focus on these models in the next section.

2.3 BERT for ABSA

2.3.1 Overview

One of the most consequential developments for NLP systems [10] has been the BERT

model proposed in [2], which has enabled significant performance improvements for AE

[14,61–67], ASC [14,62–65,68–73], and E2E-ABSA [9,13,14,66,71]. We will briefly consider

the architecture underlying BERT.

As illustrated in Figure 2.1, BERT comprises multiple layers of transformers arranged in

a bi-directional layout. The model accepts a sequence of discrete tokens as input, beginning

with a dummy token CLS (used to return a classification decision) and with the boundaries

of sentences in the original text indicated by the token SEP . As an example, we may

observe that the input pair of sentences “This is red. That is blue.” has been transformed

into a compatible token sequence. Each input token is encoded using three embedding

layers (corresponding to the token value, sentence index, and position in the text) to yield a

fixed-length input embedding vector. The input embedding vectors are fed into a transformer

layer with multiple self-attention modules (twelve for BERTBASE, sixteen for BERTLARGE).

15

Additional transformer layers are stacked serially (twelve for BERTBASE, twenty-four for

BERTLARGE), with the output of the final layer generating a contextualized representation

of the input text [74]. The output embedding corresponding to the CLS token may be fed

into a downstream neural network (e.g. a linear layer) for classification problems, while other

problems requiring sequential output may use the entire output embedding sequence.

Figure 2.1: BERTBASE Architecture [1, 2]

16

2.3.2 Training Procedures

In training BERT-based systems, we distinguish between pre-training, in which all parame-

ters of the BERT model are optimized for general language tasks, and fine-tuning, in which

the BERT model’s parameters are frozen and the downstream layer optimized for a specific

task (e.g. spam email classification) [3, 75].

Pre-Training

As depicted in Figure 2.2, during pre-training BERT acquires a general understanding of

language usage through two tasks. In masked language modeling (MLM) a random word

is masked and must be predicted from context (Figure 2.3a). In next sentence prediction

(NSP) BERT determines whether two sentences are consecutive (Figure 2.3b).

Figure 2.2: Overview of BERT Pre-Training [3]

17

(a) Masked Language Modeling [3]

(b) Next Sentence Prediction [3]

Figure 2.3: BERT Pre-Training Tasks

18

Fine-Tuning

Using the BERT language model pre-trained on general text, we may add additional layers

to the model output and fine-tune these layers to perform tasks such as text classification or

tagging (see Figure 2.4). The simplest models pass the value of the final BERT layer’s CLS

unit (the hidden unit corresponding to the CLS token) as the encoded input representation

to a linear layer combined with a softmax unit to generate label probabilities [13, 61–64,

67, 68, 70]. As variants of this configuration, intermediate layers’ CLS unit values may

be pooled to yield the encoded representation [65, 71], while the linear layer’s output may

be fed to non-linear gating functions for further feature extraction [65]. Other instances of

downstream task-specific layers may rely on RNNs [13,52], CNNs [66], capsule networks [73],

and attention networks [13,48,51,69].

Figure 2.4: Fine-tuning [3]

19

While most of the BERT-based ABSA models feed a single review sentence to a BERT

block with a downstream layer, various alternative structures have been explored. The

inclusion of an auxiliary sentence as input may improve performance on ABSA tasks, for-

mulated as specific aspect words [68, 69], aspect words combined with sentiments, or ques-

tions [62,65]. More recently, a self-distillation procedure for learning from both labeled data

and a self-ensemble of previous student models has been proposed to enhance the fine-tuning

process [76].

2.3.3 Training Data

For both pre-training and fine-tuning, the two most important categories of data are in-

domain (containing text from the same domain as the intended domain e.g. laptop reviews),

and in-task (containing annotated examples of the intended task e.g. AE). While the two

data categories are not mutually exclusive, due to data scarcity it is common to exploit

transfer learning by further pre-training on in-task out-of-domain data (unsupervised but

more plentiful), before supervised fine-tuning with in-domain data [14,63,64,72,77]. Further

investigations into the specific composition of data for training and fine-tuning have sought to

improve performance on domains with scarce data, by performing dynamic data re-balancing

[14], data augmentation [78], adversarial training examples [64] or meta-fine-tuning [77].

2.3.4 Computational Considerations

Despite the substantial performance improvements for NLP tasks enabled by BERT, the

large number of trainable parameters entails a high computational cost: one study’s training

of an adapted BERT model using German-language law court decisions used four GPUs

over twelve hours [79]. This has motivated the development of derivative language models

with smaller memory footprints [38]. DistillBERT uses knowledge distillation during the

pre-training stage, allowing for a 40% reduction in the size of the BERT model with 97% of

the performance of BERT on the GLUE NLP benchmark tests [80].

By making a number of structural changes to BERT, Albert has significantly reduced

the number of model parameters (an 89% reduction for the base Albert model compared

to BERTBASE) without compromising performance [5]. Whereas BERT has used distinct

parameters for each transformer layer, Albert has shared the same layer parameters between

layers (see Figure 2.5).

20

Figure 2.5: Parameter Sharing [4]

To reduce the number of parameters involved in converting input tokens to embeddings,

Albert factorizes the single embeddings matrix of size V × E0 used by BERT (Figure 2.6a)

into two smaller matrices (Figure 2.6b). By projecting the vocabulary embeddings first

into a lower-dimensional representation (E1 = 100) before scaling up to a higher dimension

(H = 768), Albert requires much fewer parameters (V × E1+E1 ×H � V × E0).

(a) BERT Embedding Matrix [4]

(b) Albert Embedding Matrix [4]

Figure 2.6: Embedding Matrices

21

Figure 2.7: Sentence Order Prediction [4]

Finally to encourage the model to learn coherence rather than predict similar topics, the

NSP objective has been replaced with a sentence order prediction task, in which the model

must decide the correct ordering of two sentences found consecutively in a text (see Figure

2.7). Together these three structural modifications have led to superior performance on three

NLP benchmark sets (GLUE [81], SQuAD [82], and RACE [83]) when Albert and BERT

have been trained for the same duration.

We note that the use of Albert in place of BERT for ABSA has not been attempted pre-

viously. We hypothesize that using an Albert-based model may achieve better performance

than BERT-based models while appreciably reducing model size.

2.4 Datasets for ABSA

The development of ABSA systems has been constrained by the availability of suitable

data for training and testing. Inspired by standardized datasets for sentiment analysis,

the most widely used English datasets for ABSA are the 2014–2016 SemEval Challenge

datasets [11, 26, 84, 85], followed by the 2014 Twitter dataset [86] and SentiHood [87]. In

the restaurant domain, the newer MAMS dataset seeks to provide more data with multiple

aspects and sentiment polarities [73]. For Mandarin, the Camera, Car, Notebook and Phone

datasets enable AE, ASC and E2E-ABSA [50]. Smaller datasets continue to be collected for

ABSA in order to fill gaps in unexplored languages or domains (e.g. Indonesian tourism [88]

and Telugu films [89]). We summarize key attributes of the main datasets in Table 2.1.

We note that in SemEval-2014.4 the Conflict label indicates aspects with both positive and

negative sentiments; in SemEval-2015.12 the hotel domain is used for out-of-domain category

ASC, and in SentiHood the None label indicates that no sentiments are expressed towards

the aspect.

22

T
ab

le
2.

1:
A

tt
ri

b
u
te

s
of

M
ai

n
A

B
S
A

D
at

as
et

s

D
a
ta

se
t

T
a
sk

s
L

a
n
g
u
a
g
e

D
o
m

a
in

P
o
la

ri
ti

e
s

S
em

E
va

l-
20

14
.4

A
E

(T
er

m
)

A
S
C

(T
er

m
)

A
E

(C
at

eg
or

y
)

A
S
C

(C
at

eg
or

y
)

E
n
gl

is
h

L
ap

to
p

C
om

p
u
te

rs

R
es

ta
u
ra

n
ts

P
os

it
iv

e

N
eg

at
iv

e

N
eu

tr
al

C
on

fl
ic

t

S
em

E
va

l-
20

15
.1

2

A
E

(C
at

eg
or

y
)

O
p
in

io
n

T
ar

ge
t

E
x
tr

ac
ti

on

A
S
C

(C
at

eg
or

y
)

E
n
gl

is
h

L
ap

to
p

C
om

p
u
te

rs

R
es

ta
u
ra

n
ts

H
ot

el
s

P
os

it
iv

e

N
eg

at
iv

e

N
eu

tr
al

S
em

E
va

l-
20

16
.5

A
E

(C
at

eg
or

y
)

O
p
in

io
n

T
ar

ge
t

E
x
tr

ac
ti

on

A
S
C

(C
at

eg
or

y
)

E
n
gl

is
h

A
ra

b
ic

M
an

d
ar

in

D
u
tc

h

F
re

n
ch

R
u
ss

ia
n

S
p
an

is
h

T
u
rk

is
h

L
ap

to
p

C
om

p
u
te

rs

R
es

ta
u
ra

n
ts

M
ob

il
e

T
el

ep
h
on

es

D
ig

it
al

C
am

er
as

H
ot

el
s

M
u
se

u
m

s

T
el

ec
om

m
u
n
ic

at
io

n
s

P
os

it
iv

e

N
eg

at
iv

e

N
eu

tr
al

20
14

T
w

it
te

r
A

S
C

E
n
gl

is
h

E
le

ct
ro

n
ic

s

C
el

eb
ri

ti
es

C
om

p
an

ie
s

P
os

it
iv

e

N
eg

at
iv

e

N
eu

tr
al

S
en

ti
H

o
o
d

A
E

(C
at

eg
or

y
)

A
S
C

(C
at

eg
or

y
)

E
n
gl

is
h

N
ei

gh
b

or
h
o
o
d
s

P
os

it
iv

e

N
eg

at
iv

e

N
on

e

23

M
A

M
S

A
E

(T
er

m
)

A
S
C

(T
er

m
)

A
E

(C
at

eg
or

y
)

A
S
C

(C
at

eg
or

y
)

E
n
gl

is
h

R
es

ta
u
ra

n
ts

P
os

it
iv

e

N
eg

at
iv

e

N
eu

tr
al

U
n
ifi

ed
E

2E
-A

B
S
A

(T
er

m
)

E
n
gl

is
h

R
es

ta
u
ra

n
ts

P
os

it
iv

e

N
eg

at
iv

e

N
eu

tr
al

C
am

er
a

A
E

(T
er

m
)

A
S
C

(T
er

m
)

E
2E

-A
B

S
A

(T
er

m
)

M
an

d
ar

in
C

am
er

as
P

os
it

iv
e

N
eg

at
iv

e

C
ar

A
E

(T
er

m
)

A
S
C

(T
er

m
)

E
2E

-A
B

S
A

(T
er

m
)

M
an

d
ar

in
C

ar
s

P
os

it
iv

e

N
eg

at
iv

e

N
ot

eb
o
ok

A
E

(T
er

m
)

A
S
C

(T
er

m
)

E
2E

-A
B

S
A

(T
er

m
)

M
an

d
ar

in
N

ot
eb

o
ok

C
om

p
u
te

rs
P

os
it

iv
e

N
eg

at
iv

e

P
h
on

e

A
E

(T
er

m
)

A
S
C

(T
er

m
)

E
2E

-A
B

S
A

(T
er

m
)

M
an

d
ar

in
M

ob
il
e

T
el

ep
h
on

es
P

os
it

iv
e

N
eg

at
iv

e

24

Chapter 3

Design

Having studied ABSA approaches in literature, we formulate three ABSA problems (AE,

ASC, and E2E-ABSA) and propose a solution using adversarial training with the Albert

language model (“Albat”).

3.1 Problem Formulation

We first formalize the learning problems for the tasks associated with ABSA (AE, ASC, E2E-

ABSA). Following the notation of [13], we have considered an input sentence x of T words.

We have denoted the words associated with opinion targets or their aspects (henceforth

referred to as aspect words) using the index set i. The index set has cardinality n < T , i.e.

there are n aspect words in x, {xi0 , ..., xin}. Note that sentences may contain compounds of

multiple aspect words (e.g. battery life), which we term aspect phrases.

AE Given the input sequence x, AE seeks to identify the positions of all aspect phrases.

We have used the OBI labeling scheme, with O indicating non-aspect words, B single-word

aspects and words beginning an aspect phrase, and I words otherwise inside an aspect phrase.

ASC Given the input sequence x and the aspect words {xi0 , ..., xin}, ASC assigns a senti-

ment polarity to each target word. The sentiment labels may be positive (POS), negative

(NEG), neutral (NEU), or conflicting (CON).

End-to-End ABSA We may combine AE and ASC so that the aspect phrase position

estimates (O,B,I) may be generated jointly with the sentiment labels (POS, NEG, NEU,

25

CON). This yields a unified label for each word expressing whether a word belongs to an

aspect phrase and if so, the associated sentiment polarity [26].

In implementing E2E-ABSA numerous practical considerations may arise. First, it is

important to distinguish between opinion targets (which are entities) and aspects (which

are attributes). The most simple sentences describe multiple aspects of a single opinion

target, however the opinion target itself may not be mentioned explicitly. More challenging

sentences may involve multiple opinion targets and one or more aspects [73]. For soundness,

a unified labeling scheme must ensure that the same sentiment label is applied to all words

within an aspect phrase, and that no sentiment labels are applied with the label O.

3.2 Solution Design

3.2.1 Albat

Inspired by the BERT Adversarial Training model described in [64], we have implemented

an Albert-based model (“Albat”) that exploits adversarial training examples to improve

classification performance. Figure 3.1 presents an overview of the Albat model architecture.

Figure 3.1: Albat Model Overview (with a One-Layer Classifier)

26

Input Embeddings We first pre-process each input review xi into a token sequence

{[CLS], xi0 , ..., xin , [SEP]} of variable length in. Note that [CLS] and [SEP] perform the

same functions for Albert as for BERT. We pad each token sequence with null tokens to reach

a uniform length of ns = 100 tokens and we form training batches of nb = 16 sequences,

hence each batch is of size (nb, ns). Within each batch, each token is then converted into a

numerical representation (known as an embedding) comprising three components:

• the token embedding, a numerical vector representation of size ne = 128. The tokens

embeddings have been extracted using the SentencePiece software package [90] for

English text, and a modified BERT tokenizer [2] for Mandarin text.

• the segment embedding, denoting the token’s original sentence;

• the position embedding, indicating the absolute index of the token in the original

review text.

The resulting batches of embedding sequences have a uniform size (nb, ns, ne).

Encoder The batches of embedding sequences are fed as inputs to an Albert encoder

module. The encoder generates a numerical hidden representation of nh = 768 dimensions

for each embedding, resulting in an output of size (nb, ns, nh). Whereas in BAT the encoder

uses the bert-base-uncased transformer architecture for English texts, Albat uses the more

recent albert-base-v2 and albert chinese base models with 12 attention heads and 12

hidden layers each. The original albert-base-v1 model achieves a significant reduction in

the number of training parameters (and thus memory footprint and training duration) by

sharing parameter between layers and factorizing the embedding matrix into smaller sub-

matrices [5]. The albert-base-v2 model is an improved version pre-trained on a larger

dataset for more steps and without using dropout, while the albert chinese base model

has been pre-trained further on Mandarin texts.

Classification With nl = 9 possible sequence labels per token, we pass the encoder output

to a classification network. In this section we will describe the Albat model variant using

a single linear layer of size (nh, nl), however the subsequent loss analysis is identical for

the two-layer and three-layer model variants (as the final classification layers have the same

output dimension nl). The linear layer generates a logit tensor ȳi ∈ Rnb×ns×nl containing the

unnormalized likelihoods of each label for each token. We then calculate the cross-entropy

loss for batch i using the maximum-likelihood label estimates ŷi = arg maxl ȳi[·, ·, l] ∈ Rnb×ns

27

https://huggingface.co/voidful/albert_chinese_base
https://huggingface.co/voidful/albert_chinese_base

and ground-truth labels yi ∈ Rnb×ns as

Li,o =

nb∑
b=1

ns∑
s=1

− ln

(
exp (ŷ[b, s, y[b, s]])∑nl

l=1 exp (ŷ[b, s, l])

)
(3.1)

=

nb∑
b=1

ns∑
s=1

−ŷ[b, s, y[b, s]] + ln

nl∑
l=1

exp (ŷ[b, s, l]) (3.2)

We can thus calculate the scalar loss value Li,o for each training batch.

Adversarial Attack To increase the robustness of the model to input noise, we may use

adversarial perturbations when training the model. As proposed in [64] we employ a “white-

box” attack that adds a deterministic perturbation to the original input embedding. In

doing so we seek to minimize the model loss for the worst-possible input perturbation, i.e.

one which would cause the model to predict an incorrect label. The model can thus learn

how to make appropriate predictions given future disturbances via the input.

We first denote the probability of the model generating the label y given the input x and

model parameters θ as p(y|x, θ). We recall from Equation 3.2 that the cross-entropy loss of

the model is positively correlated with the log-likelihood of generating an incorrect label y¬t

for an input (since
∑nl

l=1 exp (ŷ[·, ·, l]) ∝ p(y¬t|x, θ)). We therefore require the perturbation

radv that satisfies the optimization problem

radv = arg min
r:‖r‖≤ε

ln p(y|x+ r, θ̂) (3.3)

We use θ̂ as a constant copy of the model parameters θ to prevent gradient propagation

through the adversarial sub-network during training. As described in [91] we may approxi-

mate the solution to Equation 3.3 by linearizing ln p(y|x+ r, θ̂) about x. Controlled by the

size parameter ε, this yields the quantity

radv = −ε g

‖g‖2
(3.4)

where g = ∇x ln p(y|x+ r, θ̂)

which we add to the original embeddings. We then pass the perturbed input through an

identical encoder and classification network and calculate the resulting cross-entropy loss

Li,a. Finally we calculate the total model loss Li as the sum of the model loss Li,o and the

adversarial loss Li,a.

28

3.2.2 Albat-PT

Building on the architecture of Albat, we may modify the underlying language model de-

rived from albert-base-v2. Further pre-training the model bert-base-uncased using texts

from a specific target format (e.g. online reviews) improves performance on downstream

ABSA tasks such as AE and ASC [63]. In contrast, the efficacy of further pre-training

albert-base-v2 for downstream tasks has not yet been explored. Doing so may yield simi-

lar performance benefits for AE, ASC and E2E-ABSA.

29

Chapter 4

Results

In this chapter we present details of the implementation of the Albat model architecture and

evaluate the performance of Albat variants on ABSA tasks.

4.1 Experimental Setup

4.1.1 Implementation

Code Base We have used the publicly-available code for the BAT model introduced in [64]

as a base for developing and fine-tuning Albat models. Due to the retirement of the package

pytorch pretrained bert in favor of the newer transformers package, we have needed

to rename a number of functions and classes used in the BAT code to avoid execution

errors. We have then replaced the tokenizer and encoder associated with bert-base-uncased

with either those of albert-base-v2 (for English) or those of albert chinese base (for

Mandarin). For all fine-tuning operations we have used a batch size of 16, a maximum

sequence length of 100, and the Adam optimizer algorithm with an initial learning rate of

3× 10−5 and tuneable weight decay constant λ.

Model Variants and Evaluation Metrics We have introduced three new model classes

involving a classifier stage with one, two and three layers respectively. For each model variant

we have observed that there is no significant improvement in performance when fine-tuning

for more than five epochs. We have therefore initialized five different models, trained each

model for five epochs and saved the model parameters with the highest performance for

the corresponding validation dataset. When tuning hyperparameters we have reported the

average values over five runs for E2E-ABSA (accuracy ACC and macro-averaged F1 score

30

MF1). When reporting the performance of model variants using optimized hyperparameters

we have also reported metrics for ASC (ACC and MF1) and AE (F1 score F1).

Further Pre-Training To explore the impact of further pre-training on English review

texts on the performance of Albat, we have relied on code from the earlier BERT-PT repos-

itory [63]. Substituting albert-base-v2 for bert-base-uncased, we have used mixed-

precision calculations for further pre-training (specifically 16-bit floating point representa-

tion). This has reduced the memory footprint of the model and input data representations,

allowing for more training examples per batch and a reduced total run time.

Hardware For all code development and testing we have used the cloud-based Colab-

oratory development environment, providing access to a remote back-end server with 80

GB of storage space, 12 GB of RAM and a Tesla P100-PCIE-16GB graphical processing

unit (GPU). To work around occasional Colaboratory usage restrictions placed on its GPU-

enabled servers, we have also had access to a back-end server using a GeForce GTX 1080 Ti

GPU provided by Emotech.

4.1.2 Data

Fine-tuning To fine-tune models and evaluate their performance, we have relied primarily

on the 2014 SemEval Challenge Task 4 laptop and restaurant datasets (respectively Lapt14

and Rest14) [11]. Since these datasets contain labels only for the AE and ASC tasks, we

have used an automated script to generate the corresponding unified labels for E2E-ABSA

as described in Section 3.1. These new datasets’ properties are shown in Tables 4.1 and 4.2.

Table 4.1: SemEval-2014 Laptop Dataset Properties

Dataset Sentences
Sentiments

Aspects POS NEG NEU CON
Train 3048 2317 980 841 454 42

Validation 100 49 29 16 4 0
Test 800 650 340 126 168 16
Total 3948 3016 1349 983 626 58

31

https://colab.research.google.com/
https://colab.research.google.com/

Table 4.2: SemEval-2014 Restaurant Dataset Properties

Dataset Sentences
Sentiments

Aspects POS NEG NEU CON
Train 3044 3654 2145 789 631 89

Validation 100 96 68 18 10 0
Test 800 1130 725 195 196 14
Total 3944 4880 2938 1002 837 103

After evaluating the impact of various hyperparameter combinations on model perfor-

mance using the Lapt14 and Rest14 datasets, we have selected the optimal hyperparameter

combination for each model architecture (e.g. Albat containing albert-base-v2 and a one-

layer classifier). We have then fine-tuned each model with Lapt14, Rest14 and six additional

datasets individually.

Two of the additional six datasets contain English-language data. The Unified dataset

includes more examples of restaurant domain reviews from the 2014–2016 SemEval Chal-

lenges [13], while the harder MAMS dataset focuses on reviews involving multiple aspects

and multiple sentiments [73]. These datasets’ properties are presented in Tables 4.3 and 4.4.

Table 4.3: Unified Dataset Properties

Dataset Sentences
Sentiments

Aspects POS NEG NEU CON
Train 3490 3834 2306 919 609 0

Validation 387 409 268 93 48 0
Test 2158 2239 1493 489 257 0
Total 6035 6482 4067 1501 914 0

Table 4.4: MAMS Dataset Properties

Dataset Sentences
Sentiments

Aspects POS NEG NEU CON
Train 4297 11182 3379 2764 5039 0

Validation 500 1332 403 325 604 0
Test 500 1336 400 329 607 0
Total 5297 13850 4182 3418 6250 0

The remaining four datasets contain Mandarin-language data as collated and prepared

in [50]. The Camera, Car, Notebook, and Phone datasets respectively cover the domains of

cameras, cars, notebook computers and mobile telephones. We have evaluated performance

on these datasets in order to widen the field of domains and languages under consideration.

The properties of these datasets are presented in Tables 4.5–4.8.

32

Table 4.5: Camera Dataset Properties

Dataset Sentences
Sentiments

Aspects POS NEG NEU CON
Train 1395 1393 967 426 0 0

Validation 348 345 230 115 0 0
Test 435 434 322 112 0 0
Total 2178 2172 1519 653 0 0

Table 4.6: Car Dataset Properties

Dataset Sentences
Sentiments

Aspects POS NEG NEU CON
Train 737 738 569 169 0 0

Validation 184 184 140 44 0 0
Test 230 230 164 66 0 0
Total 1151 1152 873 279 0 0

Table 4.7: Notebook Dataset Properties

Dataset Sentences
Sentiments

Aspects POS NEG NEU CON
Train 398 398 262 136 0 0

Validation 98 98 66 32 0 0
Test 123 123 88 35 0 0
Total 619 619 416 203 0 0

Table 4.8: Phone Dataset Properties

Dataset Sentences
Sentiments

Aspects POS NEG NEU CON
Train 1592 1587 1053 534 0 0

Validation 396 396 263 133 0 0
Test 497 497 341 156 0 0
Total 2485 2480 1657 823 0 0

33

Further Pre-Training Using the BERT-PT pre-training script, we have collated reviews

from the Amazon [92] and Yelp datasets [63]. Due to memory constraints during pre-training

we have needed to use rejection sampling to create two downsampled review corpora: the first

contains 1% of review examples, while the second contains 5% of review examples. Even

with such adjustments we have observed that pre-training remains a relatively slow and

memory-intensive procedure: one epoch of pre-training using 1% of review examples takes

approximately two hours using the Tesla P100-PCIE-16GB GPU, while using 5% of review

examples takes nearly 12 hours. Due to the shorter time required to complete an epoch of

pre-training, we have pre-trained albert-base-v2 using 1% of the review examples for a

maximum of four epochs (as opposed to a maximum of two epochs when pre-training using

5% of the review examples).

4.1.3 Models

We have investigated the performance of three variants of the Albat model architecture. Each

variant has an identical structure except for the depth of the classifier stage immediately after

the two Albert encoder stages:

• Albat-1LC has a single linear layer;

• Albat-2LC has two consecutive linear layers, with an optional rectified linear unit

(ReLU) between each layer;

• Albat-3LC has three consecutive linear layers, with optional ReLU stages between

each layer.

We have also sought to compare the performance on English datasets of all three Al-

bat variants using different Albert tokenizer-encoder settings. We have further pre-trained

albert-base-v2 on either 1% of the review corpus for one and four epochs, or 5% for one

and two epochs.

34

http://jmcauley.ucsd.edu/data/amazon/links.html
https://www.yelp.com/dataset/

4.2 Albat with One-Layer Classifier

Using the default albert-base-v2 tokenizer and encoder we have first investigated the

effects on performance of three hyperparameters: dropout rate δ, perturbation size ε, and

weight decay constant λ (all are dimensionless). For each hyperparameter we have conducted

five runs, in each of which we have fine-tuned the model for five epochs. We have reported

the average values over the five runs of accuracy and the macro-averaged F1 score for both

Lapt14 and Rest14.

Using the optimal set of hyperparameters we have then evaluated Albert’s performance

on the three ABSA tasks (E2E-ABSA, ASC, AE) with the four English datasets (Lapt14,

Rest14, Unified, MAMS) and the four Mandarin datasets (Camera, Car, Notebook, Phone).

4.2.1 Hyperparameter Tuning

Dropout Designating the perturbation size ε = 2 and the weight decay constant λ = 10−1,

we have evaluated the performance of Albat-1LC with dropout δ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
Results are shown in Table 4.9, with the highest values in boldface.

Table 4.9: Influence of Dropout Rate on Albat-1LC Performance

δ
Lapt14 Rest14

ACC MF1 ACC MF1
0 95.09 52.00 94.96 59.94

0.1 95.07 51.92 94.93 60.04
0.2 95.06 52.02 95.02 60.22
0.3 95.08 51.90 95.02 60.85
0.4 95.06 51.65 94.95 60.38
0.5 95.03 51.53 94.87 60.13

35

Perturbation Size When setting the dropout rate δ = 0 and the weight decay constant

λ = 10−1, we have evaluated the performance of Albat-1LC for perturbation sizes ε ∈
{0, 0.5, 1, 2, 3, 5}. Table 4.10 contains the results, with the highest values in boldface.

Table 4.10: Influence of Perturbation Size on Albat-1LC Performance

ε
Lapt14 Rest14

ACC MF1 ACC MF1
0 94.97 51.26 94.38 60.11

0.5 95.07 51.60 94.79 61.77
1 95.05 51.65 94.72 60.08
2 95.09 52.00 94.96 59.94
3 95.09 51.91 94.96 59.86
5 94.83 50.97 94.96 60.42

Weight Decay Constant Assigning the dropout rate δ = 0 and the perturbation size

ε = 2, we have evaluated the performance of Albat-1LC for weight decay constants λ ∈
{0, 10−4, 10−3, 10−2, 10−1, 1}. Table 4.11 has the results, with the highest values in boldface.

Table 4.11: Influence of Weight Decay Constant on Albat-1LC Performance

λ
Lapt14 Rest14

ACC MF1 ACC MF1
0 95.09 52.05 94.96 60.07

10−4 95.09 52.05 94.96 60.07
10−3 95.09 52.05 94.96 60.07
10−2 95.09 51.99 94.96 60.18
10−1 94.73 49.91 94.90 60.04

1 95.07 51.86 94.99 60.14

36

4.2.2 Optimized Model Results

Despite small improvements in performance for some metrics with non-zero dropout rates in

Table 4.9, we have decided to use zero dropout. This is supported by the observation in [5]

that non-zero dropout rates do not necessarily improve model robustness for the Albert

family of language models. Table 4.10 demonstrates that a perturbation size of 2 yields the

highest value for three of the four metrics. In Table 4.11 a number of weight decay constant

values are associated with comparable performance on the Lapt14 metrics but the value 10−2

yields better performance on the Rest14 macro-averaged F1 score.

With δ = 0, ε = 2 and λ = 10−2, Table 4.12 presents the performance of Albat-1LC for

E2E-ABSA using all datasets and additional metrics for AE and ASC. Note that we have used

albert-base-v2 for English-language datasets and albert chinese base for Mandarin-

language datasets.

Table 4.12: Performance of Albat-1LC using Optimized Hyperparameters

Dataset
E2E-ABSA ASC AE
ACC MF1 ACC MF1 F1

Lapt14 95.09 51.99 79.87 77.39 87.45
Rest14 94.96 60.18 85.02 77.57 80.51
Unified 95.11 63.91 88.31 76.42 83.95
MAMS 92.24 66.32 84.30 83.60 78.77
Camera 88.90 80.45 94.10 92.38 88.45

Car 85.21 47.14 94.00 92.48 88.77
Notebook 69.05 30.59 92.68 91.56 87.60

Phone 90.20 85.58 96.22 95.61 89.99

37

4.3 Albat with Two-Layer Classifier

Using the default albert-base-v2 tokenizer and encoder we have investigated the effects on

performance of perturbation size ε, the weight decay constant λ, and the first classification

layer’s output dimension. For each hyperparameter we have conducted five runs, in each of

which we have fine-tuned the model for five epochs. We report the average values over the

five runs of accuracy and the macro-averaged F1 score for both Lapt14 and Rest14.

Using the optimal set of hyperparameters we have then evaluated the model’s perfor-

mance on the three ABSA tasks (E2E-ABSA, ASC, AE) with the eight datasets (Lapt14,

Rest14, Unified, MAMS, Camera, Car, Notebook, Phone).

4.3.1 Hyperparameter Tuning

Perturbation Size Selecting the dropout rate δ = 0, the weight decay constant λ =

10−1, and the first classification layer’s output dimension to 1152 we have evaluated the

performance of Albat-2LC for perturbation sizes ε ∈ {0, 0.5, 1, 2, 3, 5} either with or without

a ReLU stage between the two classification layers. Tables 4.13 and 4.14 show the respective

results.

Table 4.13: Influence of Perturbation Size on Albat-2LC Performance (without ReLU)

ε
Lapt14 Rest14

ACC MF1 ACC MF1
0 94.57 48.85 94.97 60.36

0.5 95.03 51.34 95.08 61.30
1 95.00 51.29 94.17 53.90
2 95.07 51.76 94.99 60.39
3 95.09 51.91 94.96 59.86
5 94.97 51.52 94.75 59.12

Table 4.14: Influence of Perturbation Size on Albat-2LC Performance (using ReLU)

ε
Lapt14 Rest14

ACC MF1 ACC MF1
0 94.57 48.85 94.97 60.36

0.5 95.03 51.34 95.08 61.30
1 95.00 51.29 94.17 53.90
2 95.07 51.76 94.99 60.39
3 95.09 51.91 94.96 59.86
5 94.97 51.52 94.75 59.12

38

Weight Decay Constant Designating the dropout rate δ = 0, the perturbation size

ε = 2, and the first classification layer’s output dimension to 1152 we have evaluated the

performance of Albat-2LC for weight decay constants λ ∈ {0, 10−4, 10−3, 10−2, 10−1, 1} with

or without a ReLU stage between the classification layers. We present the results in Tables

4.15 and 4.16.

Table 4.15: Influence of Weight Decay Constant on Albat-2LC Performance (without ReLU)

λ
Lapt14 Rest14

ACC MF1 ACC MF1
0 95.05 51.73 94.83 59.95

10−4 95.05 51.73 94.83 59.95
10−3 95.05 51.73 94.83 59.95
10−2 94.96 51.31 95.03 60.26
10−1 95.07 51.73 94.83 59.95

1 95.02 51.50 94.98 60.25

Table 4.16: Influence of Weight Decay Constant on Albat-2LC Performance (using ReLU)

λ
Lapt14 Rest14

ACC MF1 ACC MF1
0 95.05 51.73 94.83 59.95

10−4 95.05 51.73 94.83 59.95
10−3 95.05 51.73 94.83 59.95
10−2 94.96 51.31 95.03 60.26
10−1 95.07 51.76 94.99 60.39

1 95.02 51.50 94.98 60.25

39

First Classification Layer Output Dimension Setting the dropout rate δ = 0, the

perturbation size ε = 2, and the weight decay constant λ = 10−2 we have evaluated the

performance of Albat-2LC for the first classification layer output dimension selected from

{0.5, 1.0, 1.5, 2.0, 2.5, 3.0}×768. Results for the model with an intermediate ReLU stage and

without one are contained in Tables 4.17 and 4.18 respectively.

Table 4.17: Influence of First Classification Layer Output Dimension on Albat-2LC Perfor-
mance (without ReLU)

First Output
Dimension

Lapt14 Rest14
ACC MF1 ACC MF1

384 94.26 45.78 94.65 56.89
768 95.08 51.68 94.98 59.57
1152 95.07 51.76 94.99 60.39
1536 95.06 51.56 95.04 60.46
1920 95.16 51.89 94.95 60.90
2304 94.40 45.92 95.02 61.69

Table 4.18: Influence of First Classification Layer Output Dimension on Albat-2LC Perfor-
mance (using ReLU)

First Output
Dimension

Lapt14 Rest14
ACC MF1 ACC MF1

384 94.26 45.78 94.65 56.89
768 95.08 51.68 94.98 59.57
1152 95.07 51.76 94.99 60.39
1536 95.06 51.56 95.04 60.46
1920 95.16 51.89 94.95 60.90
2304 94.40 45.92 95.02 61.69

40

4.3.2 Optimized Model Results

Tables 4.13 and 4.14 indicate that regardless of whether a ReLU stage is present, using ε = 3

yields the highest performance on Lapt14, while using ε = 0.5 yields the highest performance

on Rest14. A suitable compromise is ε = 2, for which we trade a decrease in performance on

Lapt14 for better performance on Rest14. In Table 4.15 a number of weight decay constant

values perform comparably on Lapt14, however in Table 4.16 the value λ = 10−1 yields

better performance on both Lapt14 and Rest14 when a ReLU stage is used. Setting the first

classification layer output dimension to 2.5× 768 = 1920 yields the highest performance on

Lapt14 and second-highest performance on the Rest14 macro-averaged F1 score regardless

of whether a ReLU stage is present.

Table 4.19 displays the performance of Albat-2LC with δ = 0, ε = 2, λ = 10−1, and a

ReLU stage in place.

Table 4.19: Performance of Albat-2LC using Optimized Hyperparameters

Dataset
E2E-ABSA ASC AE
ACC MF1 ACC MF1 F1

Lapt14 95.16 51.89 78.71 76.48 87.71
Rest14 94.95 60.90 84.96 77.32 81.51
Unified 95.23 65.25 87.73 75.71 83.69
MAMS 92.23 66.25 76.63 71.23 78.20
Camera 89.97 82.35 94.06 92.30 88.17

Car 86.61 48.82 93.83 92.26 88.40
Notebook 76.66 44.61 92.03 90.84 88.68

Phone 90.66 86.28 96.22 95.59 89.64

41

4.4 Albat with Three-Layer Classifier

We have investigated the effects on performance of four hyperparameters (perturbation size ε,

the weight decay constant λ, the first and the second classification layers’ output dimensions)

by utilizing the default albert-base-v2 tokenizer and encoder. For each hyperparameter

we have conducted five runs, in each of which we have fine-tuned the model for five epochs.

The average values of accuracy and the macro-averaged F1 score over the five runs for both

Lapt14 and Rest14 have been reported.

We have then evaluated performance on the three ABSA tasks (E2E-ABSA, ASC, AE)

with the eight datasets and the optimal hyperparameters.

4.4.1 Hyperparameter Tuning

Perturbation Size Setting the dropout rate δ = 0, the weight decay constant λ = 10−1,

the first and second classification layers’ output dimensions to 1152 and 1536 respectively,

we have evaluated the performance of Albat-3LC for perturbation sizes ε ∈ {0, 0.5, 1, 2, 3, 5}
either with or without ReLU stages between each of the three classification layers. See Tables

4.20 and 4.21 respectively.

Table 4.20: Influence of Perturbation Size on Albat-3LC Performance (without ReLU)

ε
Lapt14 Rest14

ACC MF1 ACC MF1
0 94.59 48.50 94.69 59.48

0.5 94.90 50.43 94.83 59.67
1 95.04 51.37 94.96 60.36
2 95.14 51.91 95.03 60.84
3 95.08 51.78 94.87 59.86
5 94.98 51.26 94.87 59.75

Table 4.21: Influence of Perturbation Size on Albat-3LC Performance (using ReLU)

ε
Lapt14 Rest14

ACC MF1 ACC MF1
0 94.59 48.50 94.69 59.48

0.5 94.90 50.43 94.83 59.67
1 95.04 51.37 94.96 60.36
2 95.14 51.91 95.03 60.84
3 95.08 51.78 94.87 59.75
5 94.98 51.26 94.87 59.75

42

Weight Decay Constant Applying the dropout rate δ = 0, the perturbation size ε =

2, the first and second classification layers’ output dimensions to 1152 and 1536 respec-

tively, we have evaluated the performance of Albat-3LC for weight decay constants λ ∈
{0, 10−4, 10−3, 10−2, 10−1, 1} either with or without ReLU stages between each of the three

classification layers. See Tables 4.22 and 4.23 respectively.

Table 4.22: Influence of Weight Decay Constant on Albat-3LC Performance (without ReLU)

λ
Lapt14 Rest14

ACC MF1 ACC MF1
0 95.07 51.47 95.03 60.28

10−4 95.07 51.47 95.03 60.28
10−3 94.87 50.26 94.92 60.52
10−2 95.17 52.08 95.13 64.00
10−1 95.12 51.93 94.92 61.98

1 95.07 51.84 95.13 62.01

Table 4.23: Influence of Weight Decay Constant on Albat-3LC Performance (using ReLU)

λ
Lapt14 Rest14

ACC MF1 ACC MF1
0 95.07 51.47 95.03 60.28

10−4 95.07 51.47 95.03 60.28
10−3 95.07 51.47 95.03 60.28
10−2 95.02 51.12 94.77 58.55
10−1 95.14 51.91 95.03 60.84

1 95.06 51.50 94.95 59.91

43

First Classification Layer Output Dimension Designating the dropout rate δ = 0, the

perturbation size ε = 2, the weight decay constant λ = 10−1, and the second classification

layer’s output dimension to 1536, we have evaluated the performance of Albat-3LC for the

first classification layer output dimensions selected from {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} × 768,

either with or without ReLU stages between each of the three classification layers. See

Tables 4.24 and 4.25 respectively.

Table 4.24: Influence of First Classification Layer Output Dimension on Albat-3LC Perfor-
mance (without ReLU)

First Output
Dimension

Lapt14 Rest14
ACC MF1 ACC MF1

384 95.01 51.32 94.87 60.04
768 94.94 50.63 95.07 60.86
1152 95.12 51.93 94.92 61.98
1536 95.05 51.98 95.04 62.58
1920 95.10 51.90 95.06 62.64
2304 95.17 52.29 95.08 64.35

Table 4.25: Influence of First Classification Layer Output Dimension on Albat-3LC Perfor-
mance (using ReLU)

First Output
Dimension

Lapt14 Rest14
ACC MF1 ACC MF1

384 94.21 47.09 94.47 52.98
768 94.72 49.45 94.90 60.08
1152 95.14 51.91 95.03 60.84
1536 95.05 51.46 94.91 59.94
1920 95.05 51.46 94.97 59.91
2304 95.15 52.01 95.10 61.02

44

Second Classification Layer Output Dimension Employing the dropout rate δ = 0,

the perturbation size ε = 2, the weight decay constant λ = 10−1, and the first classification

layer’s output dimension to 1152, we have evaluated the performance of Albat-3LC for the

second classification layer output dimensions selected from {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} × 768,

either with or without ReLU stages between each of the three classification layers. See Tables

4.26 and 4.27 respectively.

Table 4.26: Influence of Second Classification Layer Output Dimension on Albat-3LC Per-
formance (without ReLU)

Second Output
Dimension

Lapt14 Rest14
ACC MF1 ACC MF1

384 95.03 51.34 94.99 60.49
768 95.17 52.09 94.98 59.59
1152 94.98 51.13 95.00 61.87
1536 95.12 51.93 94.92 61.98
1920 95.03 51.74 95.04 63.07
2304 95.17 52.19 95.05 63.23

Table 4.27: Influence of Second Classification Layer Output Dimension on Albat-3LC Per-
formance (using ReLU)

Second Output
Dimension

Lapt14 Rest14
ACC MF1 ACC MF1

384 93.65 39.97 94.54 54.67
768 94.83 50.05 94.65 56.61
1152 94.89 50.63 94.71 57.91
1536 95.14 51.91 95.03 60.84
1920 95.12 51.91 95.15 60.77
2304 95.02 51.46 94.96 60.17

45

4.4.2 Optimized Model Results

Tables 4.20 and 4.21 demonstrate that whether or not a ReLU stage is present, using ε = 2

yields the highest performance on both Lapt14 and Rest14. Comparing Tables 4.22 and 4.23,

the use of λ = 10−2 without ReLU stages outperforms the use of λ = 10−1 with ReLU stages

on both Lapt14 and Rest14. Finally, with all other variables held constant in Tables 4.24 –

4.27, the combination of setting the first and second classification layer output dimensions

to 2304 and 1536 respectively without ReLU stages performs best on Lapt14 and Rest14

(see Table 4.24).

Table 4.28 presents the performance of Albat-3LC with δ = 0, ε = 2, λ = 10−2, the first

and second classification layer output dimensions set to 2304 and 1536 respectively, and no

ReLU stages.

Table 4.28: Performance of Albat-3LC using Optimized Hyperparameters

Dataset
E2E-ABSA ASC AE
ACC MF1 ACC MF1 F1

Lapt14 95.17 52.16 78.43 75.87 88.06
Rest14 95.10 63.27 78.43 75.87 80.69
Unified 95.08 64.27 87.25 72.33 83.38
MAMS 92.04 65.13 84.37 83.76 78.59
Camera 88.35 76.12 93.64 91.73 87.97

Car 86.73 53.19 90.52 83.68 88.52
Notebook 77.81 56.80 90.89 89.37 88.86

Phone 90.27 85.89 96.62 96.06 89.91

46

4.5 Albat with Further Pre-training

Having established the combinations of hyperparameters that yield optimal performance

for Albat-1LC, Albat-2LC, and Albat-3LC, we have studied the impact of further pre-

training the Albert tokenizer-encoder pair on the performance of the whole network. For

each of the three Albat model variants we have compared the performance of the default

albert-base-v2 tokenizer-encoder settings with those of four further pre-trained model set-

tings, trained with 1% of the review corpus for 1 epoch and 4 epochs, and with 5% of the

review corpus for 1 epoch and 2 epochs.1 Due to memory limitations we were unable to

conduct further pre-training using 10% of the corpus.

4.5.1 Albat-1LC

Comparing the results of the albert-base-v2 model in Table 4.12 with those of the further

pre-trained models in Tables 4.29–4.32, we have observed that further pre-training was detri-

mental to performance on ABSA tasks. In particular, a marked reduction in the E2E-ABSA

macro-averaged F1 score for each dataset has suggested that further pre-training Albert has

caused “catastrophic forgetting” of existing knowledge as described in [93].2

Table 4.29: Performance of Albat-1LC (PT using 1% Data for 1 Epoch)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 46.77 20.80
Rest14 84.65 11.82 65.00 26.26

Table 4.30: Performance of Albat-1LC (PT using 1% Data for 4 Epochs)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 53.45 23.22
Rest14 84.79 12.76 65.00 26.26

1While in [63] numerous pre-training methods are proposed, we have only found publicly released code
for the BERT-DK method.

2Notably this phenomenon has been observed for other text classification tasks using BERT models [94].

47

Table 4.31: Performance of Albat-1LC (PT using 5% Data for 1 Epoch)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 58.37 42.70
Rest14 84.71 11.47 72.30 45.03

Table 4.32: Performance of Albat-1LC (PT using 5% Data for 2 Epochs)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 55.86 36.07
Rest14 84.71 11.47 66.71 30.80

We have observed different patterns in performance for each of the ABSA tasks:

• E2E-ABSA: there was no change in performance when further pre-training Albert

for more than one epoch.

• AE: it was not possible to generate an F1 score for any of the further pre-trained

models.

• ASC: when pre-training using 1% of the review corpus beyond one epoch, there was

a slight improvement in Lapt14 metrics but no improvement in Rest14 metrics. When

pre-training using 5% of the review corpus beyond one epoch, both domains’ metrics

deteriorated.

It is likely that further pre-training Albert on a larger subset of the review corpus may not

improve performance on any of the three ABSA tasks.

4.5.2 Albat-2LC

In comparing the results of the albert-base-v2 model in Table 4.19 with those of the

further pre-trained models in Tables 4.33–4.36, we have observed that further pre-training

was detrimental to performance on ABSA tasks:

• E2E-ABSA: there was no change in performance when further pre-training Albert

for more than one epoch.

• AE: it was not possible to generate an F1 score for any of the further pre-trained

models.

48

Table 4.33: Performance of Albat-2LC (PT using 1% Data for 1 Epoch)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 40.09 18.39
Rest14 84.71 11.47 65.00 26.26

Table 4.34: Performance of Albat-2LC (PT using 1% Data for 4 Epochs)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 40.09 18.39
Rest14 84.71 11.47 65.00 26.26

Table 4.35: Performance of Albat-2LC (PT using 5% Data for 1 Epoch)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 40.09 18.39
Rest14 84.71 11.47 65.00 26.26

Table 4.36: Performance of Albat-2LC (PT using 5% Data for 2 Epochs)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 49.37 36.49
Rest14 84.71 11.47 67.64 35.88

• ASC: there was no change in performance when pre-training using 1% of the review

corpus beyond one epoch. When pre-training using 5% of the review corpus beyond

one epoch, both domains’ metrics have improved.

Comparing the results for pre-training using 1% and 5% of the review corpus, we may

speculate that further pre-training Albert on a larger subset of the review corpus may improve

the performance of Albat-2LC on ASC but not E2E-ABSA or AE.

4.5.3 Albat-3LC

Comparing the results of the albert-base-v2 model in Table 4.28 with those of the further

pre-trained models in Tables 4.37–4.40, we have again observed that further pre-training was

detrimental to performance on ABSA tasks:

49

Table 4.37: Performance of Albat-3LC (PT using 1% Data for 1 Epoch)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 20.06 11.14
Rest14 84.71 11.47 65.00 26.26

Table 4.38: Performance of Albat-3LC (PT using 1% Data for 4 Epochs)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 20.06 11.14
Rest14 84.71 11.47 65.00 26.26

Table 4.39: Performance of Albat-3LC (PT using 5% Data for 1 Epoch)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 50.94 34.12
Rest14 84.71 11.47 65.00 26.26

Table 4.40: Performance of Albat-3LC (PT using 5% Data for 2 Epochs)

Dataset
E2E-ABSA ASC
ACC MF1 ACC MF1

Lapt14 89.97 10.52 52.10 40.57
Rest14 84.71 11.47 68.86 38.84

• E2E-ABSA: there was no change in performance when further pre-training Albert

for more than one epoch.

• AE: it was not possible to generate an F1 score for any of the further pre-trained

models.

• ASC: there was no change in performance when pre-training using 1% of the review

corpus beyond one epoch. When pre-training using 5% of the review corpus beyond

one epoch, both domains’ metrics have improved slightly.

Comparing the results for pre-training using 1% and 5% of the review corpus, we may

speculate that further pre-training Albert on a larger subset of the review corpus would

improve the performance of Albat-3LC on ASC but not E2E-ABSA or AE.

50

Chapter 5

Discussion

Experimental outcomes within the context of results found in literature are discussed, a

case study is employed to demonstrate our methodology, confusion matrices are generated

to study patterns in model error types and frequencies, and we analyze the various Albat

models’ resource usage.

5.1 Model Performance

5.1.1 Metrics

Eight datasets have been used to evaluate Albat model performance:

• English-language datasets:

– Lapt14 is a standard dataset for evaluating performance on AE and ASC for the

laptop computer domain;

– Rest14 is a standard dataset for evaluating performance on AE and ASC for the

restaurant domain;

– Unified is a standard dataset for evaluating performance on E2E-ABSA, con-

taining a larger sample of restaurant-domain reviews;

– MAMS contains more complex restaurant-domain reviews, with multiple enti-

ties, aspects or sentiments per review.

51

• Mandarin-language datasets:

– Camera is a standard dataset for evaluating performance on AE and ASC for

the camera domain;

– Car is a standard dataset for evaluating performance on AE and ASC for the car

domain;

– Notebook is a standard dataset for evaluating performance on AE and ASC for

the notebook computer domain;

– Phone is a standard dataset for evaluating performance on AE and ASC for the

mobile telephone domain.

Standardized metrics associated with each of the ABSA tasks (E2E-ABSA, AE and ASC)

have been employed. We will discuss the rationale behind the choice of metrics for each task

below.

E2E-ABSA The evaluation of Albat model variants on E2E-ABSA involving all datasets

has been one of our primary objectives. E2E-ABSA is a single-label multi-class classification

task, so an average of each class’s F1 score has been an appropriate metric for performance

evaluation [26]. We have reported both the micro-averaged F1 score (here equivalent to

accuracy1) and the macro-averaged F1 score for each dataset, corresponding to a total of

sixteen evaluation metrics:

• Lapt14 accuracy and macro-averaged F1 score,

• Rest14 accuracy and macro-averaged F1 score,

• Unified accuracy and macro-averaged F1 score,

• MAMS accuracy and macro-averaged F1 score,

• Camera accuracy and macro-averaged F1 score,

• Car accuracy and macro-averaged F1 score,

• Notebook accuracy and macro-averaged F1 score,

• Phone accuracy and macro-averaged F1 score.

1See Appendix C for an explanation of the different averaging methods used with the F1 score.

52

AE and ASC We have also sought to evaluate the performance of the Albat model variants

on each dataset. AE is a binary classification task (a token is either part of an aspect or not),

with the F1 score for aspect words as the literature’s standard metric. This has generated

eight evaluation metrics:

• Lapt14 F1 score,

• Rest14 F1 score,

• Unified F1 score,

• MAMS F1 score,

• Camera F1 score,

• Car F1 score,

• Notebook F1 score,

• Phone F1 score.

Similar to E2E-ABSA, ASC is a single-label multi-class classification task with accuracy

and the macro-averaged F1 score as the standard metrics reported in literature. We have

reported sixteen evaluation metrics:

• Lapt14 accuracy and macro-averaged F1 score,

• Rest14 accuracy and macro-averaged F1 score,

• Unified accuracy and macro-averaged F1 score,

• MAMS accuracy and macro-averaged F1 score,

• Camera accuracy and macro-averaged F1 score,

• Car accuracy and macro-averaged F1 score,

• Notebook accuracy and macro-averaged F1 score,

• Phone accuracy and macro-averaged F1 score.

53

Literature Results We have been able to find results in literature for twenty-one of these

forty metrics:

• E2E-ABSA accuracy for Lapt14 and Unified;

• AE F1 score for Lapt14, Rest14, Camera, Car, Notebook, and Phone;

• ASC accuracy and macro-averaged F1 score for Lapt14, Rest14, Camera, Car, Note-

book, and Phone;

• ASC accuracy for MAMS.

The optimized Albat model variants exceed state of the art results in five of the twenty-one

metrics for which literature values have been found (both E2E-ABSA metrics, one of the thir-

teen ASC metrics and two of the six AE metrics). Note that since all Albat model variants

have used hyperparameters tuned with Lapt14 and Rest14, it is possible that the perfor-

mance of Albat model variants fine-tuned with the Mandarin datasets has been sub-optimal.

Additional performance gains may be achieved by tuning these models’ hyperparameters

using the Mandarin datasets instead of Lapt14 and Rest14.

Model Identification For greater clarity, in Figures 5.1–5.12 we have used a numerical

scheme supplemented with a color scheme to identify each model uniquely:

1. � Albat-1LC

2. � Albat-2LC

3. � Albat-3LC

4. � BAT [64]

5. � DomBERT [14]

6. � BERT + SAN [13]

7. � CapsNet-BERT [73]

8. � XLNetCN-AS-AP-add [95]

9. � LCF-ATEPC-CDW [50]

10. � LCF-ATEPC-CDM [50]

11. � LCF-ATEPC-Fusion [50]

54

5.1.2 E2E-ABSA

In the E2E-ABSA literature we have observed that model performance in [26] and [13] has

been reported using micro-averaged F1 scores for each domain (cf. Appendix B). Since these

results have been included in [14] under the same performance metric, it is reasonable to

assume that [14] has also reported micro-averaged F1 scores (equivalent to accuracy, see

Appendix C). Figures 5.1 and 5.2 have been collated under that assumption.

In Figure 5.1, Albat-3LC has achieved state of the art accuracy for Lapt14, while in

Figure 5.2 Albat-2LC has achieved state of the art accuracy for Unified.

Figure 5.1: Performance Comparison with State of the Art for E2E-ABSA on Lapt14 (Ac-
curacy)

Figure 5.2: Performance Comparison with State of the Art for E2E-ABSA on Unified (Ac-
curacy)

55

5.1.3 AE

Figures 5.3 and 5.4 present AE results for Lapt14 and Rest14 respectively. Albat-1LC

achieves the state of the art AE F1 score for Lapt14, while no Albat model variant achieves

state of the art performance for Rest14.

Figure 5.3: Performance Comparison with State of the Art for AE on Lapt14 (F1 Score)

Figure 5.4: Performance Comparison with State of the Art for AE on Rest14 (F1 Score)

56

Figures 5.5 and 5.6 present AE results for Camera and Car respectively. The Albat model

variants achieve competitive performance on the state of the art AE F1 score for Camera.

In addition, Albat-1LC achieves the state of the art AE F1 score for Car.

Figure 5.5: Performance Comparison with State of the Art for AE on Camera (F1 Score)

Figure 5.6: Performance Comparison with State of the Art for AE on Car (F1 Score)

57

The AE results for Notebook and Phone appear respectively in Figures 5.7 and 5.8. For

both domains the Albat model variants achieve competitive performance with the corre-

sponding state of the art model.

Figure 5.7: Performance Comparison with State of the Art for AE on Notebook (F1 Score)

Figure 5.8: Performance Comparison with State of the Art for AE on Phone (F1 Score)

58

5.1.4 ASC

Figures 5.9 and 5.10 indicate that Albat-1LC has not achieved the state of the art ASC

accuracy and macro-averaged F1 score for Lapt14.

Figure 5.9: Performance Comparison with State of the Art for ASC on Lapt14 (Accuracy)

Figure 5.10: Performance Comparison with State of the Art for ASC on Lapt14 (Macro-
averaged F1 Score)

59

Similarly from Figures 5.11–5.12 we may observe that the Albat model variants have not

achieved the state of the art ASC results for Rest14.

Figure 5.11: Performance Comparison with State of the Art for ASC on Rest14 (Accuracy)

Figure 5.12: Performance Comparison with State of the Art for ASC on Rest14 (Macro-
averaged F1 Score)

60

Figures 5.13–5.20 demonstrate that the Albat model variants have not achieved state

of the art ASC results for the four Mandarin datasets (Camera, Car, Notebook, Phone).

Nevertheless, Albat model variants perform much better on the Mandarin datasets than on

the English datasets when comparing accuracy and macro-averaged F1 scores.

Figure 5.13: Performance Comparison with State of the Art for ASC on Camera (Accuracy)

Figure 5.14: Performance Comparison with State of the Art for ASC on Camera (Macro-
averaged F1 Score)

61

Figure 5.15: Performance Comparison with State of the Art for ASC on Car (Accuracy)

Figure 5.16: Performance Comparison with State of the Art for ASC on Car (Macro-averaged
F1 Score)

62

Figures 5.17–5.20 indicate that the Albat model variants’ metrics for the Notebook and

Phone datasets in particular are competitive with the corresponding state of the art models.

Figure 5.17: Performance Comparison with State of the Art for ASC on Notebook (Accuracy)

Figure 5.18: Performance Comparison with State of the Art for ASC on Notebook (Macro-
averaged F1 Score)

63

Figure 5.19: Performance Comparison with State of the Art for ASC on Phone (Accuracy)

Figure 5.20: Performance Comparison with State of the Art for ASC on Phone (Macro-
averaged F1 Score)

64

Finally, in Figure 5.21 the optimized Albat-3LC model demonstrates the state of the art

ASC accuracy for the MAMS dataset.

Figure 5.21: Performance Comparison with State of the Art for ASC on MAMS (Accuracy)

5.1.5 Case Study

To better understand the operation of the Albat model variants we may consider a sample

English-language review and the labels predicted by each model.

Ground Truth The following text is the first review in the MAMS test subset, containing

multiple aspects and sentiments. In the examples that we have provided below we have

assigned a simple colour scheme in order to highlight the annotated ground truth aspect

labels to the reader: green for positive aspects, silver for neutral aspects and pink for

negative aspects. We note that there are three such aspects: two positive aspects (served

and appetizers) and one neutral aspect (food).

“The food was served promptly but the meal wasn’t rushed - we had plenty

of time to enjoy the appetizers and our entrees as well as sit and chat while

finishing up our drinks even after we paid.”

Albat-1LC The sentiment labels predicted by Albat-1LC are as follows:

“The food was served promptly but the meal wasn’t rushed - we had plenty

of time to enjoy the appetizers and our entrees as well as sit and chat while

finishing up our drinks even after we paid.”

65

While appetizers is correctly labeled, the model tends to identify most nouns in the

text as aspects. The grammatical structure of the fragment “The food was served promptly

but the ...” would imply a contrast of sentiments. Since the first clause contains the adverb

promptly, the subject food is associated with positive sentiment. For contrast the subsequent

noun meal is associated with negative sentiment, which demonstrates that the model has not

detected the use of litotes in the second clause to express positive sentiment. The author’s use

of the verb enjoy with the noun phrase “the appetizers and our entrees” implies favorable

sentiment towards both appetizers and entrees, explaining their positive sentiment labels.

The noun drinks is associated with neutral sentiment as the author expresses no opinion

towards it. Finally, since served is not a noun but a past participle it is not detected as an

aspect concerning the restaurant’s service.

Albat-2LC The model has annotated fewer labels than both the ground truth and Albat-

1LC:

“The food was served promptly but the meal wasn’t rushed - we had plenty

of time to enjoy the appetizers and our entrees as well as sit and chat while

finishing up our drinks even after we paid.”

Neither food nor served are detected as aspects, however appetizers is assigned positive

sentiment correctly. As with Albat-1LC, the noun drinks is incorrectly labeled as neutral.

Albat-3LC The model annotates the review text similarly to Albat-1LC:

“The food was served promptly but the meal wasn’t rushed - we had plenty

of time to enjoy the appetizers and our entrees as well as sit and chat while

finishing up our drinks even after we paid.”

Unlike Albat-1LC however, the model does not predict that entrees is an aspect with positive

sentiment.

66

Common Error Types Having observed the labels predicted for the review by each

Albat model variant, we are able to use confusion matrices to summarize the types of errors

experienced by each model. To demonstrate this visually, a square of brighter color indicates

a higher number of tokens affected by a given error in the series of graphs provided below.

In Figure 5.22 the most brightly-colored square in the confusion matrix corresponds to

Albat-1LC predicting positive sentiment for a non-aspect word (entrees is counted as two

tokens by albert-base-v2, hence the corresponding error event frequency is higher).

The teal-colored squares correspond to an instance of:

• predicting negative sentiment for a non-aspect word (meal);

• predicting neutral sentiment for a non-aspect word (drinks);

• predicting no sentiment for an aspect with positive sentiment (served);

• predicting positive sentiment for an aspect with neutral sentiment (food).

Figure 5.22: Confusion Matrix for Sample Review (Albat-1LC)

With Albat-2LC in Figure 5.23 we see fewer types of mistakes with equal frequencies:

predicting no sentiment for aspects with positive (served) and neutral sentiments (food), and

predicting neutral sentiment for a non-aspect word (drinks).

67

Figure 5.23: Confusion Matrix for Sample Review (Albat-2LC)

With Albat-3LC, in Figure 5.24 we see similar mistakes to those of Albat-1LC without

predicting positive sentiment for a non-aspect word (entrees).

Figure 5.24: Confusion Matrix for Sample Review (Albat-3LC)

From this example, we can hypothesize that Albat model variants tend to predict senti-

ments for non-aspect words or vice versa, and that it is less common to confuse an aspect

word’s sentiment for another sentiment. Using these observations, we may infer that the

ground truth labels have not considered words which may be legitimate aspect phrases.

68

5.1.6 Confusion Matrices

We next consider the types of errors for each dataset and model for the task of E2E-ABSA.

Lapt14 Figures 5.25a–5.25c display similar patterns to each other. The most frequent

error is predicting no sentiment for a true aspect word (portrayed by the top row of the

confusion matrix), followed by predicting negative sentiment instead of neutral sentiment.

Confusion between sentiments is less common, particularly involving the conflict sentiment.

(a) Albat-1LC (b) Albat-2LC

(c) Albat-3LC

Figure 5.25: Confusion Matrices for Lapt14

69

Rest14 Figures 5.26a–5.26c display similar patterns to each other. The most frequent er-

rors involve predicting positive sentiment instead of neutral sentiment, followed by predicting

no sentiment for a true aspect word. As for Lapt14, confusion between sentiments is less

common, as is predicting a sentiment for a non-aspect word.

(a) Albat-1LC (b) Albat-2LC

(c) Albat-3LC

Figure 5.26: Confusion Matrices for Rest14

70

Unified Figures 5.27a–5.27c display similar patterns to each other. Unlike Lapt14 and

Rest14, the most frequent errors involve predicting a sentiment for non-aspect words (chiefly

positive sentiment), followed by predicting no sentiment for true aspect words (primarily with

positive sentiments), and predicting positive sentiment instead of neutral sentiment. Other

types of confusions between sentiments are less common. Note that Unified and MAMS do

not contain conflict-labeled aspects.

(a) Albat-1LC (b) Albat-2LC

(c) Albat-3LC

Figure 5.27: Confusion Matrices for Unified

71

MAMS Figures 5.28a–5.28c display similar patterns to each other. It is most common

to predict no sentiment for true aspect words (particularly those with positive sentiment),

followed by predicting neutral sentiment for non-aspect words. It is less common to pre-

dict other sentiments for non-aspect words, or to confuse positive, neutral, and negative

sentiments with each other.

(a) Albat-1LC (b) Albat-2LC

(c) Albat-3LC

Figure 5.28: Confusion Matrices for MAMS

72

Camera Figures 5.29a–5.29c display similar error distributions to each other. All three

Albat models frequently assign positive sentiment to negative aspects and non-aspect words,

while assigning no sentiment to positive aspects is less common. This suggests a tendency

towards over-assigning positive sentiments, perhaps due to the imbalance of positive and

negative aspects in the dataset. Note that Camera and the other Mandarin datasets do not

contain neutral- or conflict-labeled aspects.

(a) Albat-1LC (b) Albat-2LC

(c) Albat-3LC

Figure 5.29: Confusion Matrices for Camera

73

Car In Figures 5.30a and 5.30b, the most common confusions involve assigning no senti-

ment to positive aspects. It is less common for these models to assign positive sentiment

to non-aspect words and negative aspects, however these are the most frequent error types

for Albat-3LC in Figure 5.30c. As seen with Camera, these results suggest an imbalance of

training examples containing positive and negative aspects.

(a) Albat-1LC (b) Albat-2LC

(c) Albat-3LC

Figure 5.30: Confusion Matrices for Car

74

Notebook In Figures 5.31a and 5.31b the only errors arise when the model assigns no

sentiment to positive and negative aspects. In addition, we may observe an additional group

of errors in Figure 5.30c, with Albat-3LC assigning positive sentiment to negative aspects

and non-aspect words less frequently.

(a) Albat-1LC (b) Albat-2LC

(c) Albat-3LC

Figure 5.31: Confusion Matrices for Notebook

75

Phone Figures 5.32a and 5.32b display similar patterns to each other, with the most

frequent errors occurring when the model assigns positive sentiment to negative aspects

and non-aspect words. In Figure 5.32c there is a higher frequency of errors assigning no

sentiment to positive aspects, followed by assigning negative sentiment to positive aspects

and non-aspect words. As seen with the other Mandarin datasets, the majority of aspects

examples in Phone have positive sentiment, and this is reflected by the models’ tendency to

over-assign positive sentiment.

(a) Albat-1LC (b) Albat-2LC

(c) Albat-3LC

Figure 5.32: Confusion Matrices for Phone

76

5.1.7 Further Pre-Training

We now turn to evaluating the methodology for pre-training Albert, considering the perfor-

mance observed with pre-training albert-base-v2 on 1% and 5% of the review corpus in

Section 4.5.

Methodology To implement further pre-training we have used a script contained within

the code repository for [63]. The original paper proposed numerous methods for further

pre-training BERT models:

• BERT-DK, using unsupervised in-domain data;

• BERT-MRC, using supervised data for reading comprehension tasks;

• BERT-PT, interleaving training examples from in-domain review data and out-of-

domain reading comprehension data.

While the paper’s results have demonstrated superior performance on ABSA tasks when

using the BERT-PT method, the code repository contains an implementation of the BERT-

DK method. It is therefore plausible that the poor performance observed with the further

pre-trained Albert models has arisen due to two connected factors:

• First, using the BERT-DK method may have caused catastrophic forgetting of task-

related knowledge contained within albert-base-v2; and

• Secondly, using smaller subsets of the review corpus may have exacerbated this effect.

Data Quantity and BERT-PT As observed in Section 4.5, using a larger review corpus

for further pre-training may not necessarily improve the performance of Albat model variants

on ABSA tasks. We speculate that using the BERT-PT method instead of the BERT-DK

method may yield superior performance when pre-training Albert models further.

77

5.2 Resource Usage

The primary motivation behind the development of Albert was to reduce the number of

trainable parameters used in BERT [5]. We also anticipated a decrease in the memory usage

and in the time required to train Albert on a given dataset with respect to BERT.

To verify whether such gains from resource conservation have been achieved with Albat,

we have collected run-time statistics from BAT and the three optimized Albat model variants.

We have fine-tuned each model (BAT, Albat-1LC, Albat-2LC, Albat-3LC) for three epochs

with different task-dataset combinations:

• AE and ASC using Lapt14 and Rest14 (BAT and Albat models);

• AE and ASC using the remaining six datasets (Albat models);

• E2E-ABSA using all datasets (Albat models).

For each fine-tuned model, we have recorded the number of trainable parameters, the

size of the model in memory, and the duration of training. We have profiled the resource

usage of BAT fine-tuned with the datasets used in [64] (Lapt14 and Rest14), while we have

provided full results across all three tasks and eight datasets for the Albat model variants.

Of particular importance is the comparison between BAT and Albat-1LC, which differ only

in the use of BERT or Albert.

We must recall that the underlying Albert encoders change depending on whether English

text is used (i.e. albert-base-v2) or Mandarin text is used (i.e. albert chinese base).

We have therefore collated duplicate results for datasets using the same underlying model

when considering the number of trainable parameters and model size: English datasets refer

to Lapt14, Rest14, MAMS, and Unified, while Mandarin datasets refer to Camera, Car,

Notebook, and Phone.

78

Trainable Parameters In Figure 5.33 we have observed an 87.6% reduction in the number

of parameters between BAT and Albat-1LC for the English AE and ASC tasks (1.09× 108

versus 1.35×107). While Albat-2LC and Albat-3LC have slightly more trainable parameters

for the same task-dataset combination (1.69×107 and 1.70×107 respectively), these quantities

are still on an order of magnitude less than that of BAT.

For all task-dataset combinations Albat-1LC has fewer parameters than Albat-2LC and

Albat-3LC. Furthermore, the three Albat model variants using albert chinese base have

fewer trainable parameters (1.06 × 107, 1.20 × 107, and 1.59 × 107) than the equivalent

English model variants (1.35× 107, 1.69× 107, and 1.70× 107). In addition the proportional

increase in trainable parameters between Albat-2LC and Albat-3LC is greater when using

albert chinese base (+32.5%) than when using albert-base-v2 (+6.25%).

Figure 5.33: Trainable Parameters for BAT and Albat

79

Model Size We have observed a similar trend in the memory size of models. In Figure

5.34 the BAT models fine-tuned on the Lapt14 and Rest14 AE and ASC tasks occupy 417.7

MB of memory, while the corresponding Albat-1LC models occupy 51.4 MB of memory (a

reduction of 87.7%). For the same task-dataset combinations Albat-2LC and Albat-3LC

occupy more memory (64.3 MB and 64.9 MB) than Albat-1LC, a trend which is repeated

across all AE, ASC, and E2E-ABSA tasks.

As with the number of trainable parameters, the Mandarin Albat model variants require

less memory (40.3 MB, 46.0 MB, and 60.6 MB) than their English counterparts (51.4 MB,

64.3 MB, and 64.9 MB). Similarly, the proportional increase in model size between Albat-

2LC and Albat-3LC is greater for albert chinese base (+31.7%) than for albert-base-v2

(+0.9%).

Figure 5.34: Size of Trained Models for BAT and Albat

80

Training Duration For a finer understanding of the time required to fine-tune models

with each of the eight datasets, we have considered the training duration for the three ABSA

tasks individually.

Figure 5.35 demonstrates a reduction in training duration for AE with Lapt14 and

Rest14 when using Albat-1LC instead of BAT, by 62 seconds and 44 seconds respectively.

For all datasets except for MAMS the training duration increases between Albat-1LC and

Albat-2LC, while the training duration increases between Albat-2LC and Albat-3LC for all

datasets.

It is worth comparing the training durations between datasets: Lapt14 and MAMS re-

quire longer training, followed by Unified, Rest14, Phone, Camera, Car and Notebook. Due

to the greater number of sentences in the Lapt14 and MAMS datasets, each epoch of fine-

tuning considers a larger number of examples, so training requires more time. The obser-

vation that dataset size correlates with training duration also explains the shorter training

durations for Notebook and Car.

Figure 5.35: Training Duration for BAT and Albat Models (AE)

81

Figure 5.36: Training Duration for BAT and Albat Models (ASC)

As with AE, Figure 5.36 demonstrates a reduction in training duration for ASC with

Lapt14 and Rest14 when using Albat-1LC instead of BAT, by 48 seconds and 73 seconds

respectively. For the English datasets the training duration decreases between Albat-1LC and

Albat-2LC, while for the Mandarin datasets the training duration increases. The training

duration increases between Albat-2LC and Albat-3LC for all datasets except Lapt14 and

Rest14. MAMS in particular has a much longer training duration than the other datasets,

followed by Rest14, Unified, Lapt14, Phone, Camera, Car, and Notebook.

In Figure 5.37 we have observed that when fine-tuning on E2E-ABSA with all datasets

except Car, the training duration increases between Albat-1LC and Albat-2LC. In addition

the training duration increases between Albat-2LC and Albat-3LC for all datasets. Unified

and MAMS require longer training, followed by Lapt14, Rest14, Phone, Camera, Car and

Notebook.

82

Figure 5.37: Training Duration for BAT and Albat Models (E2E-ABSA)

83

Chapter 6

Conclusions

6.1 Summary

Our project has focused on applying the Albert language model to the problem of ABSA.

Our primary goal has been to integrate an adversarial training method with Albert in order

to perform E2E-ABSA and other ABSA tasks.

Literature Review At the beginning of the project we surveyed literature relating to

ABSA, considering both information retrieval systems and machine learning techniques.

Among the deep neural network architectures discussed, we examined the use of the BERT

language model in ABSA applications. We then collated and summarized information about

various datasets commonly used to train and evaluate performance on ABSA tasks.

Design After conducting the review of ABSA literature, we formalized the three ABSA

tasks (AE, ASC, and E2E-ABSA) as learning problems. Inspired by the BERT Adversarial

Training model proposed in [64], we incorporated the lighter Albert language model into

an adversarial training scheme, thus creating the Albat model architecture. We also briefly

discussed the rationale behind further pre-training Albert on a generic review corpus.

Results We presented details of our implementation of the Albat model architecture before

performing a comprehensive optimization of hyperparameter settings using the Lapt14 and

Rest14 datasets. Using the optimized hyperparameters we evaluated the performance of

three Albat variants on the three ABSA tasks. We also performed further pre-training with

Albert on subsets of a review corpus comprising online e-commerce and restaurant reviews,

noting a deterioration in the resulting Albat models’ performance on ABSA tasks.

84

Discussion Regarding the experimental outcomes, we compared and discussed our results

with those found in the literature. Focusing on a single review, we contrasted the differences

between the three Albat models’ label predictions and speculated on the underlying rea-

sons. We generated confusion matrices for each dataset and Albat model variant, extracting

patterns in error type and frequency. Finally we analyzed each Albat model’s resource usage.

We conclude with a reflection on the contributions of this investigation to the literature

and discuss a number of project extensions for future research.

6.2 Contributions

By means of this investigation we consider that we have advanced the literature in four ways.

First, we have adapted an adversarial training framework for ABSA tasks, substituting

the default Albert model for BERT models further pre-trained on domain-specific review

corpora. This decision was motivated by a desire for a reduced model memory footprint and

training duration, and has been justified by analysis in Section 5.2.

We have evaluated the efficacy of the adversarial training in addressing E2E-ABSA. While

adversarial training was successful with AE and ASC in [64], its use with E2E-ABSA had

not been attempted previously. Our use of adversarial training with E2E-ABSA has yielded

successful results.

To evaluate model performance on E2E-ABSA we have adapted existing datasets to use

a consistent and unified tagging scheme. This has enabled the generation of performance

benchmarks for E2E-ABSA with eight datasets (Lapt14, Rest14, Unified, MAMS, Camera,

Car, Notebook, and Phone) in two languages (English and Mandarin), widening the scope

for future research into E2E-ABSA systems’ performance.

Finally, using optimized Albat model variants we have achieved state of the art perfor-

mance on all E2E-ABSA metrics, two AE metrics, and one ASC metric. The optimized

Albat model variants demonstrate competitive performance regarding the state of the art

for four AE metrics and four ASC metrics. This provides a foundation for Albat model

performance and justifies further improvements to the Albat model architecture.

We refer readers interested in inspecting our code to the Albat online repository.

6.3 Future Work

Given Albat’s performance, we outline a number of promising directions for future research.

85

https://github.com/williamsdaniel888/Albat

Building on Section 4, additional tests of Albat model’s performance may be pursued.

While we have only considered English-language reviews from the laptop computer and

restaurant domains and Mandarin-language reviews from the notebook computer, camera,

car, and mobile telephone domains, several datasets for ABSA have been released for other

languages and domains (notably SentiHood [87], SemEval-2016.5 [85], and the 2014 Twitter

dataset [86]). It would be valuable to observe how well Albat models perform on ABSA

tasks after fine-tuning using these additional datasets. We also anticipate that the research

community will release pre-trained Albert models in more languages, allowing more datasets

and domains to be investigated.

In parallel with exploring additional datasets, the operation of the Albat model could be

probed further. Analysis of the parameter weights within the fine-tuned Albat models’ layers

and attention head modules could be conducted as per [96]. Doing this would clarify the

relative importance of these components for the label prediction process and would permit a

more efficient restructuring of the Albat model (for example, tuning each classification layer’s

learning rates individually). Employing alternative Albert models such as albert-large-v2

could yield superior performance on ABSA tasks (as observed with other NLP tasks [5]).

Architectural changes to the Albat structure may improve the handling of subtle, more

complex sentence structures. The inclusion of an auxiliary sentence as an input appears

to improve performance in BERT-based models for ABSA [9, 61, 65], so it is conceivable

that a similar approach could be incorporated into Albat. Although the use of embeddings

that include additional information (such aspect target phrase tokens) has also boosted the

performance of the BERT-based model on ASC in [65,73], it is unclear whether it would be

feasible or desirable to apply them to other ABSA tasks. This remains to be examined.

The procedures for pre-training and fine-tuning Albat may be adapted as new strategies

for BERT-based models emerge. While we have conducted further pre-training following the

BERT-DK method proposed in [63] and observed catastrophic forgetting, the alternative

BERT-PT method proposed in the same paper could yield a more robust Albert model.

A method focusing on extracting common linguistic phenomena between different domains

before domain-specialized pre-training is proposed in [77]. Results suggest that this method

could reduce the duration of further pre-training significantly. Transferring knowledge during

further pre-training from domains and languages with more resources to those with fewer

resources is explored in [14], potentially widening the applicability of existing ABSA models.

Finally, incorporating self-distillation with self-ensembling into the fine-tuning process as

described in [76] may improve the efficacy of Albert when adapting to new domains.

There are several pathways by which this area of research may be fruitfully advanced.

86

Appendix A

Abbreviations Glossary

The following is a list of abbreviations frequently used in this report. Note that we do not

include model names found in literature except Albert and BERT.

ABSA: Aspect-Based Sentiment Analysis

ACC: Accuracy

AE: Aspect Extraction

Albat: Albert Adversarially Trained

Albat-1LC: Albat with a One-layer Classifier

Albat-2LC: Albat with a Two-layer Classifier

Albat-3LC: Albat with a Three-layer Classifier

Albat PT: Albat Further Pre-trained

Albert: A Lite BERT

ASC: Aspect Sentiment Classification

ASE: Aspect Sentiment Evolution

BAT: BERT Adversarially Trained

BERT: Bi-directional Encoder Representations from Transformers

BERT-DK: BERT Further Pre-training using Domain Knowledge

BERT-MRC: BERT Further Pre-training using Machine Reading Comprehension

BERT-PT: BERT Post-Training

CLS: Classification Place-holder Token

CNN: Convolutional Neural Network

CON: Conflict

87

E2E-ABSA: End-to-End Aspect-Based Sentiment Analysis

FN: False Negative

FP: False Positive

GLUE: General Language Understanding Evaluation benchmark

GPU: Graphical Processing Unit

GRU: Gated Recurrent Unit

Lapt14: SemEval-2014 Challenge Task 4 Laptop domain dataset

LSTM: Long Short-Term Memory network

MAMS: Multi-Aspect Multi-Sentiment dataset

MF1: Macro-averaged F1 Score

MHSA: Multi-Head Self-Attention

MLM: Masked Language Modeling

NEG: Negative

NEU: Neutral

NLP: Natural Language Processing

NSP: Next Sentence Prediction

POS: Positive

RACE: Large-scale Reading Comprehension Dataset From Examinations

RAM: Random Access Memory

ReLU: Rectified Linear Unit

Rest14: SemEval-2014 Challenge Task 4 Restaurant domain dataset

RNN: Recurrent Neural Network

RvNN: Recursive Neural Network

SEP: Segment Separator Place-holder Token

SQuAD: Stanford Question Answering Dataset

TN: True Negative

TP: True Positive

Unified: Restaurant domain reviews from [26]

88

Appendix B

E2E-ABSA Literature: F1 Score

Averaging Method

In Figure B.1 we have included a brief clarification of the averaging method used with the

F1 scores reported in [13], of which Mr. Xin Li was a co-author. The paper [13] compared

its results with those of an earlier paper [26], so it is reasonable to assume that [26] also

reported micro-averaged F1 scores.

Figure B.1: Email Correspondence with Mr. Xin Li

89

Appendix C

Classification Performance Metrics

To evaluate the performance of classification predictions for AE, ASC, and E2E-ABSA, we

have used a number of metrics. Since AE is a binary classification task, we have reported

the binary F1 score. In contrast, ASC and E2E-ABSA involve multi-class classification pre-

dictions so we have reported accuracy and the macro-averaged F1 score. In this appendix

we explain how accuracy is equivalent to the micro-averaged F1 score for multi-class classi-

fication.

C.1 Binary Classification Metrics

We first consider a binary classification task involving n examples. The classifier’s decisions

can be described as one of the following cases:

• true positive (TP), classified as positive and actually positive;

• true negative (TN), classified as negative and actually negative;

• false positive (FP), classified as positive but actually negative;

• false negative (FN), classified as negative but actually positive.

The following metrics evaluate the performance of the classifier [97,98]:

Precision Of the examples classified as positive, how many are actually positive?

P =
TP

TP + FP

90

Recall Of the actually positive examples, how many are classified as such?

R =
TP

TP + FN

F1 Score The harmonic mean of precision and recall:

F1 =
2

P−1 +R−1

Accuracy Of all the examples, how many are classified correctly?

α =
TP + TN

TP + TN + FP + FN

C.2 Multi-class Classification Metrics

In multi-class classification we consider n examples labeled using one of c classes. This

requires the use of unique case counters {TPi, TNi, FPi, FNi} for each class i. Note that

one example may belong to different case counters for different labels: given c = 3 classes,

an example with true label 2 and predicted label 3 would contribute to TN1, FN2 and FP3

simultaneously.

If we consider one class against all other classes, we may evaluate a binary classification

metric for each of the c classes. For convenience, we instead report averages of the binary

classification metrics. Several averaging methods exist, including macro-averaging and micro-

averaging.

Macro-averaged Metrics Macro-averaging calculates the “one-versus-rest” binary clas-

sification metric for each class and returns their unweighted arithmetic mean [98].

Micro-averaged Metrics Micro-averaging considers the sum of {TPi, TNi, FPi, FNi}
across all classes i as inputs for a binary classification metric [98]. We will now show that

micro-averaged precision, recall, F1 score and accuracy are equivalent.

Recall that P = TP
TP+FP

. Micro-averaged precision is given by

P̂ =

∑
i TPi∑

i TPi +
∑

i FPi
.

91

The numerator
∑

i TPi equals the number of correct predictions across all classes. The

denominator is the total number of true positives and false positives for each class; this is

equal to the total number of examples n (since every example has been assigned a label

regardless of its truthfulness). Therefore P̂ is the ratio of the number of correctly-classified

examples to the total number of examples, equal to micro-averaged accuracy α̂.

Similarly note that R = TP
TP+FN

. Micro-averaged recall is given by

R̂ =

∑
i TPi∑

i TPi +
∑

i FNi

.

The numerator
∑

i TPi equals the number of correct predictions across all classes. The

denominator is the total number of true positives and false negatives for each class; this is

equal to the total number of examples n (since every example is assigned a label). Therefore

R̂ is the ratio of the number of correctly-classified examples to the total number of examples,

equal to micro-averaged accuracy α̂.

Since micro-averaged precision and recall are identical to micro-averaged accuracy α̂, the

harmonic mean

F̂1 =
2

P̂−1 + R̂−1
=

2

2P̂−1
=

2

2R̂−1

is equal to both micro-averaged precision and recall. Hence the micro-averaged F1 score is

equal to micro-averaged accuracy.

92

Bibliography

[1] X. Wu, S. Lv, L. Zang, J. Han, and S. Hu, “Conditional bert contextual augmentation,”

in International Conference on Computational Science. Springer, 2019, pp. 84–95.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019, pp.

4171–4186.

[3] J. Alammar. (2018) The Illustrated BERT, ELMo, and co. (How NLP Cracked

Transfer Learning). Accessed: 2020-09-09. [Online]. Available: https://jalammar.

github.io/illustrated-bert/

[4] A. Chaudhary. (2020) Visual Paper Summary: ALBERT (A Lite BERT).

Accessed: 2020-09-09. [Online]. Available: https://amitness.com/2020/02/

albert-visual-summary/

[5] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT: A

Lite BERT for Self-supervised Learning of Language Representations,” in International

Conference on Learning Representations, 2019.

[6] A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning architec-

tures: a review,” Artificial Intelligence Review, pp. 1–51, 2019.

[7] A. Nazir, Y. Rao, L. Wu, and L. Sun, “Issues and challenges of aspect-based sentiment

analysis: A comprehensive survey,” IEEE Transactions on Affective Computing, 2020.

[8] H. H. Do, P. Prasad, A. Maag, and A. Alsadoon, “Deep learning for aspect-based

sentiment analysis: a comparative review,” Expert Systems with Applications, vol. 118,

pp. 272–299, 2019.

93

https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-bert/
https://amitness.com/2020/02/albert-visual-summary/
https://amitness.com/2020/02/albert-visual-summary/

[9] H. Wan, Y. Yang, J. Du, Y. Liu, K. Qi, and J. Z. Pan, “Target-Aspect-Sentiment Joint

Detection for Aspect-Based Sentiment Analysis,” in Proceedings of the Thirty-Fourth

AAAI Conference on Artificial Intelligence (AAAI), 2020.

[10] J. Zhou, J. X. Huang, Q. Chen, Q. V. Hu, T. Wang, and L. He, “Deep learning for aspect-

level sentiment classification: Survey, vision, and challenges,” IEEE Access, vol. 7, pp.

78 454–78 483, 2019.

[11] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and

S. Manandhar, “SemEval-2014 Task 4: Aspect Based Sentiment Analysis,” in

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval

2014). Dublin, Ireland: Association for Computational Linguistics, 2014, pp. 27–35.

[Online]. Available: https://www.aclweb.org/anthology/S14-2004

[12] Y. Wang, A. Sun, M. Huang, and X. Zhu, “Aspect-level sentiment analysis using as-

capsules,” in The World Wide Web Conference, 2019, pp. 2033–2044.

[13] X. Li, L. Bing, W. Zhang, and W. Lam, “Exploiting BERT for End-to-End Aspect-based

Sentiment Analysis,” in Proceedings of the 5th Workshop on Noisy User-generated Text

(W-NUT 2019), 2019, pp. 34–41.

[14] H. Xu, B. Liu, L. Shu, and P. S. Yu, “DomBERT: Domain-oriented language model for

aspect-based sentiment analysis,” arXiv preprint arXiv:2004.13816, 2020.

[15] R. He, W. S. Lee, H. T. Ng, and D. Dahlmeier, “An Interactive Multi-Task Learning

Network for End-to-End Aspect-Based Sentiment Analysis,” in Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, 2019, pp. 504–515.

[16] A. Alghunaim, M. Mohtarami, S. Cyphers, and J. Glass, “A Vector Space Approach for

Aspect Based Sentiment Analysis,” in Proceedings of the 1st Workshop on Vector Space

Modeling for Natural Language Processing, 2015, pp. 116–122.

[17] Y. Wang, Q. Chen, M. Ahmed, Z. Li, W. Pan, and H. Liu, “Joint inference for aspect-

level sentiment analysis by deep neural networks and linguistic hints,” IEEE Transac-

tions on Knowledge and Data Engineering, 2019.

[18] D. M. Koupaei, T. Song, K. S. Cetin, and J. Im, “An assessment of opinions and per-

ceptions of smart thermostats using aspect-based sentiment analysis of online reviews,”

Building and Environment, vol. 170, p. 106603, 2020.

94

https://www.aclweb.org/anthology/S14-2004

[19] G. S. Chauhan and Y. K. Meena, “Domsent: Domain-specific aspect term extraction in

aspect-based sentiment analysis,” in Smart Systems and IoT: Innovations in Computing.

Springer, 2020, pp. 103–109.

[20] M. E. Mowlaei, M. S. Abadeh, and H. Keshavarz, “Aspect-based sentiment analysis

using adaptive aspect-based lexicons,” Expert Systems with Applications, vol. 148, p.

113234, 2020.

[21] N. Nikolić, O. Grljević, and A. Kovačević, “Aspect-based sentiment analysis of reviews

in the domain of higher education,” The Electronic Library, 2020.

[22] M. Shams, N. Khoshavi, and A. Baraani-Dastjerdi, “Lisa: Language-independent

method for aspect-based sentiment analysis,” IEEE Access, vol. 8, pp. 31 034–31 044,

2020.

[23] C. R. Aydin and T. Güngör, “Combination of recursive and recurrent neural networks

for aspect-based sentiment analysis using inter-aspect relations,” IEEE Access, vol. 8,

pp. 77 820–77 832, 2020.

[24] C. Ji and H. Wu, “Cascade architecture with rhetoric long short-term memory for

complex sentence sentiment analysis,” Neurocomputing, 2020.

[25] M. Al-Smadi, O. Qawasmeh, M. Al-Ayyoub, Y. Jararweh, and B. Gupta, “Deep recur-

rent neural network vs. support vector machine for aspect-based sentiment analysis of

arabic hotels’ reviews,” Journal of Computational Science, vol. 27, pp. 386–393, 2018.

[26] X. Li, L. Bing, P. Li, and W. Lam, “A unified model for opinion target extraction

and target sentiment prediction,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, 2019, pp. 6714–6721.

[27] K. Shuang, Q. Yang, J. Loo, R. Li, and M. Gu, “Feature distillation network for aspect-

based sentiment analysis,” Information Fusion, 2020.

[28] N. Liu and B. Shen, “Aspect-based sentiment analysis with gated alternate neural net-

work,” Knowledge-Based Systems, vol. 188, p. 105010, 2020.

[29] H. Xu, B. Liu, L. Shu, and S. Y. Philip, “Double Embeddings and CNN-based Sequence

Labeling for Aspect Extraction,” in Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), 2018, pp. 592–

598.

95

[30] L. Shu, H. Xu, and B. Liu, “Controlled cnn-based sequence labeling for aspect extrac-

tion,” arXiv preprint arXiv:1905.06407, 2019.

[31] B. Wang and M. Liu, “Deep learning for aspect-based sentiment analysis,” Stanford

University, report, 2015.

[32] W. Xue and T. Li, “Aspect Based Sentiment Analysis with Gated Convolutional Net-

works,” in Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 2018, pp. 2514–2523.

[33] X. Hou, J. Huang, G. Wang, K. Huang, X. He, and B. Zhou, “Selective attention based

graph convolutional networks for aspect-level sentiment classification,” arXiv preprint

arXiv:1910.10857, 2019.

[34] X. Gu, Y. Gu, and H. Wu, “Cascaded convolutional neural networks for aspect-based

opinion summary,” Neural Processing Letters, vol. 46, no. 2, pp. 581–594, 2017.

[35] Y. Liang, F. Meng, J. Zhang, J. Xu, Y. Chen, and J. Zhou, “An iterative knowl-

edge transfer network with routing for aspect-based sentiment analysis,” arXiv preprint

arXiv:2004.01935, 2020.

[36] ——, “A dependency syntactic knowledge augmented interactive architecture for end-

to-end aspect-based sentiment analysis,” arXiv preprint arXiv:2004.01951, 2020.

[37] F. Ren, L. Feng, D. Xiao, M. Cai, and S. Cheng, “Dnet: A lightweight and efficient

model for aspect based sentiment analysis,” Expert Systems with Applications, p. 113393,

2020.

[38] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao,

“Deep learning based text classification: A comprehensive review,” arXiv preprint

arXiv:2004.03705, 2020.

[39] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in Ad-

vances in Neural Information Processing Systems, 2017, pp. 3856–3866.

[40] W. Zhao, H. Peng, S. Eger, E. Cambria, and M. Yang, “Towards Scalable and Reliable

Capsule Networks for Challenging NLP Applications,” in Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, 2019, pp. 1549–1559.

[41] Z. Chen and T. Qian, “Transfer capsule network for aspect level sentiment classifica-

tion,” in Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, 2019, pp. 547–556.

96

[42] C. Du, H. Sun, J. Wang, Q. Qi, J. Liao, T. Xu, and M. Liu, “Capsule network with

interactive attention for aspect-level sentiment classification,” in Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th Interna-

tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp.

5492–5501.

[43] D. Tang, B. Qin, and T. Liu, “Aspect Level Sentiment Classification with Deep Mem-

ory Network,” in Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, 2016, pp. 214–224.

[44] N. Liu and B. Shen, “Rememnn: A novel memory neural network for powerful interac-

tion in aspect-based sentiment analysis,” Neurocomputing, 2020.

[45] Y. Ma, H. Peng, and E. Cambria, “Targeted aspect-based sentiment analysis via em-

bedding commonsense knowledge into an attentive LSTM,” in Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[46] Z. Li, Y. Wei, Y. Zhang, X. Zhang, and X. Li, “Exploiting coarse-to-fine task transfer

for aspect-level sentiment classification,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, 2019, pp. 4253–4260.

[47] Y. Qiang, X. Li, and D. Zhu, “Toward tag-free aspect based sentiment analysis: A

multiple attention network approach,” arXiv preprint arXiv:2003.09986, 2020.

[48] D. Zhang, Z. Zhu, Q. Lu, H. Pei, W. Wu, and Q. Guo, “Multiple interactive attention

networks for aspect-based sentiment classification,” Applied Sciences, vol. 10, no. 6, p.

2052, 2020.

[49] Y. Song, J. Wang, T. Jiang, Z. Liu, and Y. Rao, “Attentional encoder network for

targeted sentiment classification,” arXiv preprint arXiv:1902.09314, 2019.

[50] H. Yang, B. Zeng, J. Yang, Y. Song, and R. Xu, “A Multi-task Learning Model for

Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction,” arXiv

preprint arXiv:1912.07976, 2019.

[51] B. Zeng, H. Yang, R. Xu, W. Zhou, and X. Han, “Lcf: A local context focus mechanism

for aspect-based sentiment classification,” Applied Sciences, vol. 9, no. 16, p. 3389, 2019.

[52] D. Meškelė and F. Frasincar, “Aldonar: A hybrid solution for sentence-level aspect-

based sentiment analysis using a lexicalized domain ontology and a regularized neural

97

attention model,” Information Processing & Management, vol. 57, no. 3, p. 102211,

2020.

[53] Q. Lu, Z. Zhu, D. Zhang, W. Wu, and Q. Guo, “Interactive rule attention network for

aspect-level sentiment analysis,” IEEE Access, vol. 8, pp. 52 505–52 516, 2020.

[54] J. Zhou, Q. Chen, J. X. Huang, Q. V. Hu, and L. He, “Position-aware hierarchical

transfer model for aspect-level sentiment classification,” Information Sciences, vol. 513,

pp. 1–16, 2020.

[55] S. Tulkens and A. van Cranenburgh, “Embarrassingly simple unsupervised aspect ex-

traction,” arXiv preprint arXiv:2004.13580, 2020.

[56] Z. Wu, Y. Li, J. Liao, D. Li, X. Li, and S. Wang, “Aspect-context interactive attention

representation for aspect-level sentiment classification,” IEEE Access, vol. 8, pp. 29 238–

29 248, 2020.

[57] B. Huang and K. M. Carley, “Syntax-Aware Aspect Level Sentiment Classification with

Graph Attention Networks,” in Proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint Conference on Nat-

ural Language Processing (EMNLP-IJCNLP), 2019, pp. 5472–5480.

[58] X. Bai, P. Liu, and Y. Zhang, “Exploiting typed syntactic dependencies for tar-

geted sentiment classification using graph attention neural network,” arXiv preprint

arXiv:2002.09685, 2020.

[59] K. Wang, W. Shen, Y. Yang, X. Quan, and R. Wang, “Relational graph attention

network for aspect-based sentiment analysis,” arXiv preprint arXiv:2004.12362, 2020.

[60] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models

are unsupervised multitask learners,” OpenAI, blog, 2019.

[61] Z. Gao, A. Feng, X. Song, and X. Wu, “Target-dependent sentiment classification with

BERT,” IEEE Access, vol. 7, pp. 154 290–154 299, 2019.

[62] C. Sun, L. Huang, and X. Qiu, “Utilizing BERT for Aspect-Based Sentiment Analysis

via Constructing Auxiliary Sentence,” in Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 380–385.

98

[63] H. Xu, B. Liu, L. Shu, and S. Y. Philip, “BERT Post-Training for Review Reading Com-

prehension and Aspect-based Sentiment Analysis,” in Proceedings of the 2019 Confer-

ence of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 2324–

2335.

[64] A. Karimi, L. Rossi, A. Prati, and K. Full, “Adversarial training for aspect-based sen-

timent analysis with BERT,” arXiv preprint arXiv:2001.11316, 2020.

[65] X. Li, X. Fu, G. Xu, Y. Yang, J. Wang, L. Jin, Q. Liu, and T. Xiang, “Enhancing

BERT representation with context-aware embedding for aspect-based sentiment analy-

sis,” IEEE Access, vol. 8, pp. 46 868–46 876, 2020.

[66] X. Wang, H. Xu, X. Sun, and G. Tao, “Combining Fine-Tuning with a Feature-Based

Approach for Aspect Extraction on Reviews (Student Abstract),” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 34, no. 10, 2020, pp. 13 951–13 952.

[67] M. R. Yanuar and S. Shiramatsu, “Aspect Extraction for Tourist Spot Review in Indone-

sian Language using BERT,” in 2020 International Conference on Artificial Intelligence

in Information and Communication (ICAIIC). IEEE, 2020, pp. 298–302.

[68] M. Hu, S. Zhao, H. Guo, R. Cheng, and Z. Su, “Learning to Detect Opinion Snip-

pet for Aspect-Based Sentiment Analysis,” in Proceedings of the 23rd Conference on

Computational Natural Language Learning (CoNLL), 2019, pp. 970–979.

[69] J. Yu and J. Jiang, “Adapting BERT for target-oriented multimodal sentiment classifi-

cation,” in Proceedings of the 28th International Joint Conference on Artificial Intelli-

gence. AAAI Press, 2019, pp. 5408–5414.

[70] C. A. Putri, “Analisis sentimen review film berbahasa inggris dengan pendekatan bidi-

rectional encoder representations from transformers,” JATISI (Jurnal Teknik Infor-

matika dan Sistem Informasi), vol. 6, no. 2, pp. 181–193, 2020.

[71] Y. Song, J. Wang, Z. Liang, Z. Liu, and T. Jiang, “Utilizing BERT intermediate layers

for aspect based sentiment analysis and natural language inference,” arXiv preprint

arXiv:2002.04815, 2020.

[72] A. Rietzler, S. Stabinger, P. Opitz, and S. Engl, “Adapt or get left behind: Domain

adaptation through BERT language model finetuning for aspect-target sentiment clas-

sification,” arXiv preprint arXiv:1908.11860, 2019.

99

[73] Q. Jiang, L. Chen, R. Xu, X. Ao, and M. Yang, “A Challenge Dataset and Effective

Models for Aspect-Based Sentiment Analysis,” in Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 6281–6286.

[74] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in BERTology: What we know

about how BERT works,” arXiv preprint arXiv:2002.12327, 2020.

[75] R. Wang, H. Su, C. Wang, K. Ji, and J. Ding, “To tune or not to tune? how about the

best of both worlds?” arXiv preprint arXiv:1907.05338, 2019.

[76] Y. Xu, X. Qiu, L. Zhou, and X. Huang, “Improving BERT fine-tuning via self-ensemble

and self-distillation,” arXiv preprint arXiv:2002.10345, 2020.

[77] C. Wang, M. Qiu, J. Huang, and X. He, “Meta fine-tuning neural language models for

multi-domain text mining,” arXiv preprint arXiv:2003.13003, 2020.

[78] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A.

Smith, “Don’t stop pretraining: Adapt language models to domains and tasks,” arXiv

preprint arXiv:2004.10964, 2020.

[79] C. M. Yeung, “Effects of inserting domain vocabulary and fine-tuning BERT for german

legal language,” Master’s thesis, University of Twente, 2019.

[80] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of

BERT: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[81] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A multi-task

benchmark and analysis platform for natural language understanding,” arXiv preprint

arXiv:1804.07461, 2018.

[82] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ Questions for

Machine Comprehension of Text,” in Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, 2016, pp. 2383–2392.

[83] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy, “RACE: Large-scale ReAding Comprehen-

sion Dataset From Examinations,” in Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, 2017, pp. 785–794.

[84] M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos,

“SemEval-2015 task 12: Aspect based sentiment analysis,” in Proceedings of the 9th

International Workshop on Semantic Evaluation (SemEval 2015), 2015, pp. 486–495.

100

[85] M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, M. Al-

Smadi, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq et al., “SemEval-2016 task 5:

Aspect based sentiment analysis,” in 10th International Workshop on Semantic Evalu-

ation (SemEval 2016), 2016.

[86] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu, “Adaptive recursive neural

network for target-dependent twitter sentiment classification,” in Proceedings of the

52nd annual meeting of the association for computational linguistics (volume 2: Short

papers), 2014, pp. 49–54.

[87] M. Saeidi, G. Bouchard, M. Liakata, and S. Riedel, “SentiHood: Targeted Aspect

Based Sentiment Analysis Dataset for Urban Neighbourhoods,” in Proceedings of COL-

ING 2016, the 26th International Conference on Computational Linguistics: Technical

Papers, 2016, pp. 1546–1556.

[88] D. Ekawati and M. L. Khodra, “Aspect-based sentiment analysis for Indonesian restau-

rant reviews,” in 2017 International Conference on Advanced Informatics, Concepts,

Theory, and Applications (ICAICTA). IEEE, 2017, pp. 1–6.

[89] R. Y. Reddy, R. R. R. Gangula, and R. Mamidi, “Dataset Creation and Evaluation of

Aspect Based Sentiment Analysis in Telugu, a Low Resource Language,” in Proceedings

of The 12th Language Resources and Evaluation Conference, 2020, pp. 5017–5024.

[90] T. Kudo and J. Richardson, “SentencePiece: A simple and language independent sub-

word tokenizer and detokenizer for Neural Text Processing,” in Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing: System Demonstra-

tions, 2018, pp. 66–71.

[91] T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial training methods for semi-

supervised text classification,” arXiv preprint arXiv:1605.07725, 2016.

[92] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution of fashion

trends with one-class collaborative filtering,” in Proceedings of the 25th International

Conference on World Wide Web, 2016, pp. 507–517.

[93] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks:

The sequential learning problem,” in Psychology of learning and motivation. Elsevier,

1989, vol. 24, pp. 109–165.

101

[94] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune BERT for text classification?”

in China National Conference on Chinese Computational Linguistics. Springer, 2019,

pp. 194–206.

[95] J. Su, S. Yu, and D. Luo, “Enhancing aspect-based sentiment analysis with capsule

network,” IEEE Access, vol. 8, pp. 100 551–100 561, 2020.

[96] S. Yoosuf and Y. Yang, “Fine-Grained Propaganda Detection with Fine-Tuned BERT,”

in Proceedings of the Second Workshop on Natural Language Processing for Internet

Freedom: Censorship, Disinformation, and Propaganda, 2019, pp. 87–91.

[97] L. Derczynski, “Complementarity, F-score, and NLP Evaluation,” in Proceedings of

the Tenth International Conference on Language Resources and Evaluation (LREC’16),

2016, pp. 261–266.

[98] Scikit-learn developers. (2019) 3.3 Metrics and scoring: quantifying the quality of

predictions. Accessed: 2020-07-13. [Online]. Available: https://scikit-learn.org/stable/

modules/model evaluation.html#multiclass-and-multilabel-classification

102

https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-multilabel-classification
https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-multilabel-classification

	List of Figures
	List of Tables
	Introduction
	Literature Review
	ABSA
	ABSA Approaches
	Information Retrieval Systems
	Machine Learning Systems

	BERT for ABSA
	Overview
	Training Procedures
	Training Data
	Computational Considerations

	Datasets for ABSA

	Design
	Problem Formulation
	Solution Design
	Albat
	Albat-PT

	Results
	Experimental Setup
	Implementation
	Data
	Models

	Albat with One-Layer Classifier
	Hyperparameter Tuning
	Optimized Model Results

	Albat with Two-Layer Classifier
	Hyperparameter Tuning
	Optimized Model Results

	Albat with Three-Layer Classifier
	Hyperparameter Tuning
	Optimized Model Results

	Albat with Further Pre-training
	Albat-1LC
	Albat-2LC
	Albat-3LC

	Discussion
	Model Performance
	Metrics
	E2E-ABSA
	AE
	ASC
	Case Study
	Confusion Matrices
	Further Pre-Training

	Resource Usage

	Conclusions
	Summary
	Contributions
	Future Work

	Abbreviations Glossary
	E2E-ABSA Literature: F1 Score Averaging Method
	Classification Performance Metrics
	Binary Classification Metrics
	Multi-class Classification Metrics

	Bibliography

