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Abstract

This project involves the application of model predictive control (MPC) to the problem of cooperative
payload transportation (CPT). With recent improvements in the cost and reliability of unmanned aerial
vehicle technology, an established body of research into robotic payload transportation has motivated
the use of aerial agents for CPT. The primary goal of this work is to develop a novel MPC-based control
architecture for aerial CPT schemes involving cable suspension of the load from multiple agents.

We propose a novel centralized control architecture by formulating a decreasing horizon optimal control
problem (DHOCP) for optimizing the agents’ trajectories. The DHOCP maintains compliance with
secondary control objectives (maintaining connectivity between the agents and the payload, avoiding
inter-agent collisions and spatial obstacles) by formulating such objectives as path constraints for each
agent. We then present a staged implementation of the proposed architecture using the ICLOCS2
trajectory optimization package for simulations in MATLAB. Finally, we graphically derive mathematical
models in Simscape for closed-loop simulations with Simulink, to verify the performance of the open-loop
simulations and visualize the system’s physical behavior.
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Chapter 1

Introduction

Transporting objects is a fundamental task in the field of robotics [1]. As a subset of the manipulation
problem, payload transportation is conducted by mobile agents such as unmanned aerial vehicles (UAVs).
Single-agent aerial payload transportation has been studied by numerous sources but such systems are
inherently limited by the thrust capabilities of the agent’s hardware as depicted in Figure 1.1a [2]. In
recent years, increasing interest in aerial payload transportation from the commercial [3], industrial [4],
agricultural [5], public health [6] and military [7] sectors has motivated the development of cooperative
payload transportation (CPT) [8] (Figure 1.1b). CPT schemes exploit multiple agents’ carrying capa-
bilities to transport bulky and heavy objects. This allows for a wider set of possible transportation
maneuvers at the cost of an increase in model complexity.

(a) Single-Agent System (b) Multi-Agent System

Figure 1.1: Aerial Payload Transportation
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CHAPTER 1. INTRODUCTION 8

1.1 Previous Work

The project is motivated by previous research conducted as part of a summer placement. In the earlier
project we devised a decentralized control algorithm for CPT by two UAVs as depicted in Figure 1.2.
The proposed control scheme employed one UAV as a ‘leader’ agent tracking a preset trajectory in one
dimension and the second UAV as a ‘follower’ agent minimizing the deviations from a desired cable angle,
both relying on the PID controller architecture.

While the control scheme yielded satisfactory performance in mission simulations, we noted three limi-
tations:

• Controller parameters needed to be fine-tuned manually in an open-loop manner;

• Compliance with other objectives (such as payload swing oscillations and collision avoidance) could
not be guaranteed;

• Optimality of the tracked trajectory was unknown.

The issues directly impacted the safety and efficiency of the CPT scheme implementation and could
be addressed using optimal control theory. It has been this previous work which has motivated the
application of model predictive control (MPC) to the CPT problem.

1.2 ICLOCS2

Software is required to explore how MPC affects the CPT problem. In this regard, of particular relevance
is the ICLOCS2 trajectory optimization package for MATLAB [9][10]. The ICLOCS2 package allows
users to systematically pose and solve an optimal control problem (OCP), in which a system evolves
according to an analytically derived mathematical model and must comply with user-defined path con-
straints. The user may choose from a list of methods to transcribe the OCP into a nonlinear programming
(NLP) problem. At present ICLOCS2 supports the NLP solvers IPOPT, fmincon, and WORHP. The
user may also select from a range of discretization methods to accurately represent the system’s states
and inputs. Given the system’s model, ICLOCS2 can automatically compute the derivative matrices for
the model using finite difference methods, thereby simplifying the problem setup process for the user. A
major advantage of ICLOCS2 is its interoperability with MATLAB, allowing for numerical simulations
of the system in open-loop (when the optimal sequence of system inputs is calculated once only) and
in closed-loop (when the optimal sequence of system inputs is periodically reoptimized over the mission
duration). It is for these reasons we have decided to investigate the CPT problem using ICLOCS2 for
trajectory optimization within an MPC framework.

1.3 Objectives

Our project goal is to design and simulate a novel optimal controller for a multi-agent CPT scheme,
relying on MPC for real-time optimization of the agents’ trajectories, obstacle avoidance, and prevention
of inter-agent collisions. To this end, we have formulated the following objectives for the project:

• To implement the optimal controller using ICLOCS2 and numerically simulate its performance
using Simulink [11].

• To create visual simulations of missions under the proposed CPT scheme using Simscape for
Simulink [12].
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Figure 1.2: Cooperative Payload Transportation using Unmanned Aerial Vehicles

1.4 Deliverables

Pursuant to the stated project goals and objectives, we have sought to complete the following tasks:

1. Survey the academic literature concerning multi-agent CPT schemes using UAVs.

2. Create a set of design requirements for a centralized optimal multi-agent CPT scheme.

3. Satisfy the identified design requirements.

4. Analytically derive a mathematical model of the problem (‘ADM model’).

5. Create numerical simulations of the system with ICLOCS2 in closed-loop with the ADM model in
Simulink.

6. Graphically derive a mathematical model (‘GDM model’) of the system in Simscape.

7. Create a visual simulation of system operation using ICLOCS2 in closed-loop with the GDM model
in Simulink.

1.5 Project Outline

Chapter 2 introduces the fundamentals of cooperative payload transportation and summarizes the state
of the art. The study of existing CPT schemes and their characteristics is used to extract performance
requirements for an ideal CPT scheme. In Chapter 3 we formulate the problem statement and devise
a centralized optimal control architecture that satisfies the identified design requirements. Chapter 4
details the stages of work towards implementing the proposed control architecture, progressing from
single agent relocation towards multi-agent CPT. The procedures for testing the implementation and
noteworthy results are discussed in Chapter 5. Finally, in Chapter 6 we conclude with a summary of
the project’s outcomes, evaluate the implementation’s performance and compliance with the project
objectives, and identify future work that could advance the project.



Chapter 2

Background

We introduce the fundamentals of cooperative payload transportation and summarize the state of the
art in this chapter. We also consider existing CPT schemes and extract performance requirements for
an ideal CPT scheme.

2.1 Cooperative Payload Transportation

CPT schemes may be classified according to their design (Figure 2.1) [13].

Figure 2.1: Taxonomy of CPT Schemes

10
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(a) Cable-Suspended CPT (b) Rigid-Grasp CPT [15]

Figure 2.2: Interaction Methods for CPT Schemes

(a) Centralized Control (b) Distributed Control (c) Decentralized Control

Figure 2.3: Control Architectures

Swarm Composition: Choosing the agent type has an important impact on design. UAVs allow agile
motion in three dimensions but may have shorter mission durations than terrestrial vehicles due to their
limited onboard battery life. The composition of the formation must also be considered, i.e. whether
each agent should have a uniform design or an individualized design (perhaps for task specializations, as
seen in [14]).

Interaction Methods: Once a decision has been made about the formation structure, the next issue
involves interacting with the payload (Figure 2.2a). In sling-load systems the payload is suspended
by a cable that permits versatile tensile manipulation in three dimensions [8]. Systems that use rigid
attachment to the agents’ bodies allow direct inference of the payload’s location but may not suit certain
payload sizes and shapes (Figure 2.2b).

Control Architecture: How one chooses an appropriate control architecture is important [16]. Cen-
tralized control (Figure 2.3a) involves decisions made in one location that are communicated to all agents.
Distributed control (Figure 2.3b) allows for each agent to make decisions with some communication with
peers. Decentralized control (Figure 2.3c) requires each agent to make their own decisions without
communicating with peers.
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2.2 Requirements Capture

The literature has identified several important requirements for UAV-based CPT systems:

• Robustness in a range of environments [17];

• Minimal reliance on external infrastructure [17];

• To the extent possible, minimization or elimination of dependence on explicit communication be-
tween agents [18].

The following design requirements are also identified in [19]:

• Operability in unstructured indoor and outdoor environments;

• Robust flight capabilities;

• Autonomous, onboard decision making (this requires control algorithms with lower computational
complexity [20]);

• Modular and flexible sensing and control;

• No dependence on external navigation aids.

Mission Objectives: Mission objectives occupy a hierarchy that is specific to UAV-based CPT schemes
[21]:

1. Avoid obstacles (also featured in [2] and [20])

2. Secondary objectives:

(a) Avoid collisions and excessive separation between agents
(b) Evenly distribute payload weight between vehicles

3. Reduce oscillations caused by external disturbances such as wind (incompatible with fast and
aggressive agent maneuvers [20])

Optimal control algorithms should also minimize agent thrust to conserve battery life.
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Figure 2.4: State of the Art for CPT Schemes

2.3 Existing CPT Schemes and Limitations

The literature proposes a selection of aerial- and terrestrial-based schemes representing various combina-
tions of interaction methods, degrees of control centralization, and formation control algorithms (Figure
2.4).

Control Centralization: Current trends in UAV-based CPT research have seen a shift from central-
ized control to decentralized control. When centralized and distributed architectures rely on communica-
tion they have latencies, are susceptible to infrastructure failure and increase consumption of power and
spectrum. Each problem may be avoided by eliminating explicit communication. However, fully decen-
tralized architectures rely on alternative methods of mutual localization that are more computationally
complex [22].

System Assumptions: All methods of implementation of CPT schemes make certain operational
assumptions. Common environmental assumptions include the absence of obstacles and external distur-
bances such as wind. Most CPT schemes assume external infrastructure for agent localization ([23] is a
notable exception). Few CPT schemes perform trajectory optimization in real-time ([24], [25]).

Aerial CPT: CPT schemes using cable suspension employ all three types of control architectures.
Centralized architectures relying on PID controllers are proposed in [21], [26] and [27], while a nonlinear
PD controller is proposed in [28]. Decentralized control underpins several recent proposals involving
linear quadratic regulators (LQR) [18], [29], and admittance control [23], [30] (the latter uses MPC to
track the reference trajectory generated by the admittance controller). Fewer proposals have implemented
a distributed control architecture, using a PD controller [31] or a passivity-based approach [32]. In the
CPT schemes which use rigid payload grasping, a centralized control architecture relying on LQR is
presented in [15], while a distributed wrench controller is proposed in [33] and a distributed controller
based on task priority solution features in [34].

Terrestrial CPT: A small number of proposed CPT schemes rely on terrestrial vehicles. A distributed
controller for collaborative pushing movement using PI controllers is explored in [35]. Rigid-grasp systems
appear in [36], [24] and [25]; the latter two rely on MPC techniques to solve the centralized CPT problem
[24] and the distributed CPT problem [25].



Chapter 3

Analysis and Design

We formulate the problem statement in this chapter and devise a centralized optimal control architecture
that satisfies the identified design requirements.

3.1 System Dynamics

We begin by defining an inertial coordinate system in R3 to describe the position of each agent in three
dimensions. Unless otherwise stated, we adopt the ‘East-North-Up’ convention (Figure 3.1) and assume
the gravitational constant g = 9.81 m.s-2.

Let there be N agents modeled by point masses mag; we assume N = 3 for this project unless oth-
erwise stated. Consider the ith agent located in the reference frame depicted in Figure 3.1, with
position (xi, yizi) and velocity (ẋi, ẏi, żi). Define the instantaneous state vector for the ith agent as
Xi =

[
xT

i ẋT
i yT

i ẏT
i zT

i żT
i

]T . We assume that each agent has an onboard flight controller
that can maintain the agent’s pose (position and orientation) in the presence of bounded external distur-
bances. We may therefore model each agent’s dynamics as a set of double-integrators driven by three or-
thogonal inputs in the x-, y-, and z-axes. Define the input vector for the ith agent as Ui =

[
uT

xi, u
T
yi, u

T
zi

]T

[37].

Figure 3.1: East-North-Up Coordinates for R3

14
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(a) X-Z Plane (b) Y-Z Plane

Figure 3.2: Payload Geometry

Next we assume that each agent is connected to a payload via inelastic cables of length L > 0 and
negligible mass as depicted in Figure 3.2. We assume the payload is rigid and has a homogeneous
composition. To simplify dynamical analysis, we approximate the payload using three identical points
of mass mpl

3 placed at the cable’s attachment points (xc1, yc1, zc1), (xc2, yc2, zc2), and (xc3, yc3, zc3), and
collinearly distributed about the payload’s center of mass. For the ith agent, we define the angles αi and
βi between its cable and the z-axis in the X-Z plane and Y-Z plane respectively. These are governed by
a set of algebraic equations:

α1 = atan(xc1 − x1

zc1 − z1
) (3.1)

β1 = atan(yc1 − y1

zc1 − z1
) (3.2)

α2 = atan(xc2 − x2

zc2 − z2
) (3.3)

β2 = atan(yc2 − y2

zc2 − z2
) (3.4)

α3 = atan(xc3 − x3

zc3 − z3
) (3.5)

β3 = atan(yc3 − y3

zc3 − z3
) (3.6)

Given the cable material’s spring constant k, the cable tensions (F1, F2, F3) resolved in the z-axis are
governed by the following set of algebraic equations:

F1 =
k
√

(xc1 − x1)2 + (yc1 − y1)2 + (zc1 − z1)2√
1 + (tan(α1))2 + (tan(β1))2

(3.7)

F2 =
k
√

(xc2 − x2)2 + (yc2 − y2)2 + (zc2 − z2)2√
1 + (tan(α2))2 + (tan(β2))2

(3.8)

F3 =
k
√

(xc3 − x3)2 + (yc3 − y3)2 + (zc3 − z3)2√
1 + (tan(α3))2 + (tan(β3))2

(3.9)

If we assume cable inelasticity we may approximate (F1, F2, F3) with constant values.

By resolving the force components incident at the payload’s center of mass, we can analytically derive
the mathematical model for the payload’s translational dynamics. The differential algebraic equations
for the payload’s linear acceleration are found by rearranging the definition of force F = ma to isolate
the second derivatives of the payload’s states with respect to time (ẍcom, ÿcom, z̈com): ẍcom

ÿcom

z̈com

 =


1

mpl

∑3
i=1(Fi tan(αi))

1
mpl

(
∑3

i=1(Fi tan(βi))
1

mpl
(
∑3

i=1 Fi) − g

 (3.10)
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The linear accelerations of each attachment point are equal at all times due to the assumption of payload
rigidity:

ẍcom = ẍc1 = ẍc2 = ẍc3 (3.11)
ÿcom = ÿc1 = ÿc2 = ÿc3 (3.12)
z̈com = z̈c1 = z̈c2 = z̈c3 (3.13)

Because of the assumption of cable inelasticity, the following cable length equalities must be enforced:√
(xc1 − x1)2 + (yc1 − y1)2 + (zc1 − z1)2 = L (3.14)√
(xc2 − x2)2 + (yc2 − y2)2 + (zc2 − z2)2 = L (3.15)√
(xc3 − x3)2 + (yc3 − y3)2 + (zc3 − z3)2 = L (3.16)

Owing to the collinear distribution of the attachment points about the center of mass, the following
equalities involving the attachment points’ separations hold:

r1,2 =
√

(xc1 − xc2)2 + (yc1 − yc2)2 + (zc1 − zc2)2 (3.17)
r2,3 =

√
(xc2 − xc3)2 + (yc2 − yc3)2 + (zc2 − zc3)2 (3.18)

r1,3 =
√

(xc1 − xc3)2 + (yc1 − yc3)2 + (zc1 − zc3)2 (3.19)
r1,3 = r1,2 + r2,3 (3.20)

We may therefore define an augmented state vector X and augmented input vector U for the system of
the three agents and the payload:

X1 = [XT
1 , ẋ

T
c1, y

T
c1, ẏ

T
c1, z

T
c1, ż

T
c1]T (3.21)

X2 = [XT
2 , ẋ

T
c2, y

T
c2, ẏ

T
c2, z

T
c2, ż

T
c2]T (3.22)

X3 = [XT
3 , ẋ

T
c3, y

T
c3, ẏ

T
c3, z

T
c3, ż

T
c3]T (3.23)

X =
[
X

T

1 X
T

2 X
T

3

]T

(3.24)

U1 =
[
uT

x1, u
T
y1, u

T
z1

]T (3.25)

U2 =
[
uT

x2, u
T
y2, u

T
z2

]T (3.26)

U3 =
[
uT

x3, u
T
y3, u

T
z3

]T (3.27)

U =
[
UT

1 UT
2 UT

3
]T (3.28)
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We may evaluate the state transition equation for the system:

F (X(t), U(t)) = d

dt



x1
ẋ1
y1
ẏ1
z1
ż1
xc1
ẋc1
yc1
ẏc1
zc1
żc1
x2
ẋ2
y2
ẏ2
z2
ż2
xc2
ẋc2
yc2
ẏc2
zc2
żc2
x3
ẋ3
y3
ẏ3
z3
ż3
xc3
ẋc3
yc3
ẏc3
zc3
żc3



=



ẋ1
1

mag
(ux1 − F1 tan(α1))

ẏ1
1

mag
(uy1 − F1 tan(β1))

ż1
1

mag
(uz1 − F1 −magg)

ẋc1
1

mpl

∑3
i=1(Fi tan(αi))
ẏc1

1
mpl

∑3
i=1(Fi tan(βi))
żc1

1
mpl

(
∑3

i=1 Fi) − g

ẋ2
1

mag
(ux2 − F2 tan(α2))

ẏ2
1

mag
(uy2 − F2 tan(β2))

ż2
1

mag
(uz2 − F2 −magg)

ẋc2
1

mpl

∑3
i=1(Fi tan(αi))
ẏc2

1
mpl

∑3
i=1(Fi tan(βi))
żc2

1
mpl

(
∑3

i=1 Fi) − g

ẋ3
1

mag
(ux3 − F3 tan(α3))

ẏ3
1

mag
(uy3 − F3 tan(β3))

ż3
1

mag
(uz3 − F3 −magg)

ẋc3
1

mpl

∑3
i=1(Fi tan(αi))
ẏc3

1
mpl

∑3
i=1(Fi tan(βi))
żc3

1
mpl

(
∑3

i=1 Fi) − g



(3.29)
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3.2 Problem Statement

We may now formulate the problem statement for centralized CPT using a cable-suspended system
of agents. Consider N agents governed by the system dynamics in (3.29) and satisfying the cable
angle dynamics in (3.1)–(3.6), the cable tension equalities in (3.7)–(3.9), the cable length equalities in
(3.14)–(3.16), and the attachment point separation equalities in (3.17)–(3.20). Let each mission have a
fixed duration tf . We assume that over the time interval [0, tf ] the system has the initial state X(0) and
target state X(tf ), and that the agents communicate their states to a central controller with negligible
delay. Define a function ω : R3 →R corresponding to the height clearance between the payload’s center
of mass and a fixed obstacle. The problem requires the design of a feedback control law such that:

• the agents’ and payload’s poses converge to the target state over the time interval [0, tf ] :
limt→tf

Xi(t) = Xi(tf ) ∀i ∈ {1, ..., N};

• the sum of each agent’s squared thrusts should be minimized;

• each agent remains connected to the payload, i.e. given the cable length L > 0√
(xci(t) − xi(t))2 + (yci(t) − yi(t))2 + (zci(t) − zi(t))2 = L, ∀i ∈ {1, ..., N}, ∀t ≥ 0;

• inter-agent collisions are avoided, i.e. given a minimum separation σ > 0,√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2 + (zi(t) − zj(t))2 > σ, ∀i, j ∈ {1, ..., N}, i 6= j, ∀t ≥ 0;

• collisions between the payload and the obstacle are avoided, i.e. given a minimum clearance κ > 0,
ω(xci(t), yci(t), zci(t)) > κ, ∀i ∈ {1, ..., N}, ∀t ≥ 0.

3.3 Controller Architecture

To implement the feedback control laws described in the problem statement, we must specify the optimal
control problem for the system. Assume that the system has a discrete-time controller with sampling
period ts > 0. Consider a sequence of sample times {tk}k∈N such that tk ∈ [0, tf ] and tk+1 = tk + ts.
At sample time tk the controller uses its knowledge of the system’s state to solve the following optimal
control problem:

min
U(t)

∥∥X(tk) −X(tf )
∥∥2 +

tf∑
τ=tk

‖U(τ)‖2 (3.30a)

subject to√
(xci(t) − xi(t))2 + (yci(t) − yi(t))2 + (zci(t) − zi(t))2 = L, ∀i ∈ {1, ..., N}, ∀t ∈ [0, tf ], (3.30b)√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2 + (zi(t) − zj(t))2 > σ, ∀i, j ∈ {1, ..., N}, i 6= j, ∀t ∈ [0, tf ], (3.30c)

ω(xci(t), yci(t), zci(t)) > κ, ∀i ∈ {1, ..., N}, ∀t ∈ [0, tf ]. (3.30d)

We have chosen a decreasing-horizon optimal control problem (DHOCP) formulation; the lower bound
tk of the summation in (3.30) converges to the final time tf during the mission. We require a DHOCP
(as opposed to a fixed-horizon optimal control problem) so that the system reaches the specified terminal
state by the end of the mission. When using a fixed number of collocation points for the optimization,
the decreasing optimization horizon (tf − tk) leads to smaller gaps between the predicted samples of
U(τ), known as a finer optimization mesh.

We may now transcribe the DHOCP given by (3.30) into a format compatible with the ICLOCS2
trajectory optimization package.



Chapter 4

Implementation

In simulating the controller’s performance, we have relied on the ICLOCS2 trajectory optimization
package for solving the DHOCP within the MATLAB-Simulink environment. Our approach has involved
creating basic mathematical models in code and adding constraints incrementally to converge to the
system described in Chapter 3. We have constructed four successive models for this project by:

• relocating a single agent;

• relocating a single agent attached via a cable to a payload;

• relocating two agents, each attached via a cable to the payload;

• relocating three agents, each attached via a cable to the payload.

We subsequently describe the structural features of each model and how each model’s performance has
been simulated.

19
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Figure 4.1: Double-Integrator System for a Point Mass in R3

4.1 Single-Agent Relocation

We begin by considering the problem of relocating a single agent from one position to another. We
approximate the agent by a point mass and consider the translational dynamics of a double-integrator
system in three dimensions (Figure 4.1). Let this system have six states (x, ẋ, y, ẏ, z, ż) and three inputs
(ux, uy, uz).

Representing the system state with X̂(t), we can formulate a DHOCP similar to (3.30):

min
ux(τ),uy(τ),uz(τ)

∥∥∥X̂(tk) − X̂(tf )
∥∥∥2

+
tf∑

τ=tk

‖ux(τ) + uy(τ) + uz(τ)‖2 (4.1a)

subject to
z(t) − h(tanh(x(t) − xa) − tanh(x(t) − xb)) > κ, ∀t ∈ R+ (4.1b)

where the obstacle’s height h = 1.00 m, the clearance κ = 0.50 m, and the parameters xa = 3.10 m and
xb = 4.10 m correspond respectively to the start and end of the obstacle’s length in the x-axis.

We may then transcribe (4.1) into a format appropriate for ICLOCS2 (a ‘plant’ file containing the state
transition equations, and a ‘problem’ file containing all information about the DHOCP). Note that to
reduce the computational burden on the solver we have fixed the end time tf and the number of mesh
points for the solver, and set the obstacle function ω(·) equal to a composite function that is smooth,
continuous and infinitely differentiable over its entire domain.

There are two methods in which we may use the output from ICLOCS2. In open-loop simulations the
DHOCP is fed to the optimization solver once, which then searches for the optimal sequence of control
inputs. This requires a script in MATLAB to initiate the solver with the problem settings, perform
automatic mesh refinement, and plot the evolution of the system fed by the generated control inputs.

In closed-loop simulations the solver is embedded into a control block in Simulink and is fed live positional
data from a system model driven by the solver’s output (Figure 4.2a). The system model may be in
the form of an ADM model (Figure 4.2b) or a GDM model using the Simscape Multibody library in
Simulink (Figure 4.2c).
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(a) Top-Level Simulink Diagram

(b) ADM Model using Ordinary Differential Equations

(c) GDM Model of Single Agent in Simscape

Figure 4.2: Closed-Loop Simulation Schematic Diagrams
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4.2 Single-Agent Payload Relocation

Figure 4.3: Double-Integrator System for Agent and Cable-Suspended Payload in R3

Next we consider the problem of relocating a single agent with a cable-suspended payload. We approxi-
mate the agent and payload by point masses joined by a taut cable, so we may consider the translational
dynamics of two double-integrator systems in three dimensions (Figure 4.3). Let this system have twelve
states (x, ẋ, y, ẏ, z, ż, xc, ẋc, yc, ẏc, zc, żc) and three inputs (ux, uy, uz). We may define {Fx, Fy, Fz} as the
components of the cable tension resolved in the x-, y-, and z-axes, and α1 and β1 as per (3.1) and (3.2)
respectively.

Representing the system state with X̃(t), we can formulate a DHOCP and transcribe this into code for
ICLOCS2:

min
ux(τ),uy(τ),uz(τ)

∥∥∥X̃(tk) − X̃(tf )
∥∥∥2

+
tf∑

τ=tk

‖ux(τ) + uy(τ) + uz(τ)‖2 (4.2a)

subject to
z(t) − h(tanh(x(t) − xa) − tanh(x(t) − xb)) > κ, ∀t ∈ R+ (4.2b)√

(xc(t) − x(t))2 + (yc(t) − y(t))2 + (zc(t) − z(t))2 = L, ∀t ∈ R+ (4.2c)

where the cable length L=1.20 m, the obstacle’s height h = 1.00 m, the clearance κ = 0.50 m, and the
parameters xa = 3.10 m and xb = 4.10 m correspond respectively to the start and end of the obstacle’s
length in the x-axis. Note that in addition to the obstacle function we must impose an equality constraint
to ensure that the agent and payload remain connected at all times.

As previously discussed we may run ICLOCS2 simulations in open-loop or closed-loop; the code is not
substantially different, however the GDM model represents the payload as a point mass and the taut
cable as a rigid cylinder with two spherical joints (Figure 4.4).
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Figure 4.4: GDM Model of Single Agent with Cable-Suspended Payload in Simscape
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4.3 Centralized Dual-Agent CPT

Next we may derive a model for the most basic CPT scheme using two agents. The DHOCP is identical
to that of the single-agent scheme in 4.2, with the number of agents N = 2. Hence the ADM model of the
system is similar to that of the single-agent scheme, augmented with extra states and inputs associated
with the second agent and its payload:

f(X(t), U(t)) = d

dt

[
X1(t)
X2(t)

]
=

[
f1(t)
f2(t)

]
, (4.3a)

where

fj =



ẋj
1

mag
(uxj − Fj tan(αj))

ẏj
1

mag
(uyj − Fj tan(βj))

żj
1

mag
(uzj − Fj −magg)

ẋcj
1

mpl

∑2
i=1(Fi tan(αi))
ẏcj

1
mpl

∑2
i=1(Fi tan(βi))
żcj

1
mpl

(
∑2

i=1 Fi) − g



, j ∈ {1, 2}. (4.3b)

The GDM model is a constrained duplication of the single-agent system with a payload (Figure 4.5).

Figure 4.5: GDM Model of the Dual-Agent CPT System in Simscape
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4.4 Centralized Triple-Agent CPT

We may construct the triple-agent system by a constrained triplication of the system of the single-agent
system with a cable-suspended payload. Using the system dynamics specified in (3.29) and the DHOCP
specified in (3.30), the code for ICLOCS2 can be transcribed in a similar manner to what has been
previously described. Both the state vector and input vector are enlarged proportionally to the number
of agents, while additional path constraints are included to maintain agent separation and the payload’s
rigidity. Due to the increased computational complexity of the DHOCP, we have adapted the GDM
model in Section 4.2. The updated model splits the payload into three points of equal mass, each of
which is connected to an agent and each other via distance constraints (Figure 4.6).

Figure 4.6: GDM Model of the Triple-Agent CPT System in Simscape



Chapter 5

Results

In this chapter we present and discuss the outcomes of the simulations described in Chapter 4. For each
simulation we have assumed the agent’s mass mag = 810 g and the payload’s mass mpl = 2.00 kg.

5.1 Single-Agent Relocation

5.1.1 Open-Loop Simulations

Error Analysis: We begin with the outcomes of the open-loop simulations. To determine the most
appropriate solver settings for ICLOCS2, we have conducted a series of tests with three common tran-
scription methods (the Euler, Trapezoidal, and Hermite-Simpson methods in increasing order) and differ-
ent numbers of mesh points {5,10,15,20,25,40,50,60,80}. With each combination of transcription method
and number of mesh points we have performed the open-loop simulation and extracted the computation
time (Figure 5.1) and maximum error (Figure 5.2).

26
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Figure 5.1: Computation Time (Single Agent, Open Loop)

Figure 5.2: Maximum Error (Single Agent, Open Loop)
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Figure 5.3: Maximum Error v. Computation Time (Single Agent, Open Loop)

Plotting the computation time against maximum error yields the graph in Figure 5.3. In these three
graphs we notice a number of phenomena:

• Computation time grows by increasing the order of transcription method or the number of mesh
points (Figure 5.1);

• The maximum error decreases by increasing the order of the transcription method or the number
of mesh points (Figure 5.2);

• For each transcription method a Pareto optimality boundary appears in Figure 5.3, such that we
cannot reduce one variable without creating an increase in the other variable.

Solver Parameter Selection: We have used the graph in Figure 5.3 to select the combination of
transcription method and number of mesh points that yields the fastest computation time with a suitably
low error. A Hermite-Simpson transcription method with 10 mesh points runs in 794 ms. We have
employed these parameters to solve the DHOCP described in Section 4.1, yielding the evolutions of the
system states (Figure 5.4) and the input sequence (Figure 5.5). At all times the computed solution
complies with all constraints on the state and input values.

Physical Interpretation: We first notice that the system navigates in the presence of a spatial ob-
stacle in the X-Z plane by increasing thrust in the z-axis above the hovering thrust (equal to magg =
0.81∗9.81 = 7.95 N) in order to accelerate upwards. The thrust steadily decreases until the agent reaches
the peak of the obstacle, at which the z velocity changes from positive to negative and begins freefall.
The thrust then increases to counteract the agent’s freefall, bringing the agent to the target height at
the end of the mission.

Thrust in the x-axis is initially positive, causing the agent to accelerate. The thrust then decreases during
the mission to slow the agent down, crossing from positive to negative as soon as the agent reaches the
midway point. The x velocity consequently decreases until the agent stops at the target position.

Thrust in the y-axis is negligible, as desired. The non-zero input values can be attributed to numerical
errors from the optimization solver.
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5.1.2 Closed-Loop Simulations with the ADM and GDM Models

Implementation: We have implemented the MPC-based algorithm described in Section 4.1, using
either the ADM model or the GDM model of the single agent in closed-loop with the controller. Using
the same solver parameters as for the open-loop simulation and reoptimizing the inputs every second
yields the closed-loop evolutions of the system states (Figures 5.6 and 5.7) and the input sequence (Figure
5.8 and 5.9).

Observations: We notice that these graphs are consistent with those of the open-loop simulation, with
a greater number of mesh points and greater numerical errors in uy. The computational runtime of the
entire closed-loop simulation using the ADM model (20.2 s) is comparable to that of the GDM model
(17.4 s) and is an order of magnitude slower than that of the open-loop simulation (794 ms). This is
likely due to overhead delays introduced by Simulink in performing tasks such as:

• compiling the diagram,

• initializing model variables,

• numerical integration of model variables.

The latter task is a necessary feature of all closed-loop simulations since we wish to observe how the
system behaves in response to the controller’s generated inputs, as opposed to the evolution of the
system states predicted by ICLOCS2 in open-loop simulations. For numerical integration in Simulink we
have chosen to use the MATLAB function ode23t, a variable-step solver that can handle the differential
algebraic equations contained in (3.29) [38].

In Figures 5.6 and 5.7 we may observe that the evolutions of the system’s states corresponding to the
closed-loop simulations using the ADM and GDM models are identical, with both figures resembling an
interpolation of the open-loop system states in Figure 5.4. A similar situation holds for the closed-loop
evolutions of the system inputs in Figures 5.8 and 5.9, which resemble an interpolation of the open-loop
system inputs in Figure 5.5.

Mission Visualization: The closed-loop simulation using the GDM model can visualize the system’s
behavior, representing the data in Figure 5.7 graphically. A series of still images from the mission
visualization are depicted in Figure 5.10. In order to make the agent’s height changes more obvious we
have superimposed a line on each image representing the initial height.

Consistent with the evolution of the agent’s x and z positions in Figure 5.7, the agent progresses in the
+x direction between Figures 5.10a–5.10f. We may infer that the agent accelerates in the x-axis from
the differences in the agent’s x position between Figures 5.10a–5.10b, and Figures 5.10b–5.10c. We may
also infer that the agent decelerates in the x-axis from the differences in the agent’s x position between
Figures 5.10d–5.10e, and Figures 5.10e–5.10f. These behaviors are consistent with the rise and fall of
the agent’s x velocity in Figures 5.6 and 5.7. Using similar arguments, we can deduce an increase and
decrease in the agent’s z position and z velocity, consistent with obstacle avoidance in Figures 5.6 and
5.7.
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5.2 Single-Agent Payload Relocation

We consider a single agent with a cable-suspended payload in this section.

5.2.1 Open-Loop Simulations

Error Analysis: As in the previous section, we begin with the outcomes of the open-loop simula-
tions. We have conducted the same series of tests with combinations of the three transcription meth-
ods (the Euler, Trapezoidal, and Hermite-Simpson methods) with different numbers of mesh points
{5,10,15,20,25,40,50,60,80}. We have performed the open-loop simulations for each combination and
extracted the computation time (Figure 5.11) and maximum error (Figure 5.12).

Figure 5.11: Computation Time (Single Agent with Payload, Open Loop)

Figure 5.12: Maximum Error (Single Agent with Payload, Open Loop)
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Figure 5.13: Maximum Error v. Computation Time (Single Agent with Payload, Open Loop)

Plotting the computation time against maximum error yields the graph in Figure 5.13. In these three
graphs we notice the same phenomena as in Section 5.1.1, with longer computation times in Figure 5.11
than those of the single-agent system due to the increased complexity of the DHOCP.

Solver Parameter Selection: We have selected the combination of transcription method and number
of mesh points that yields the fastest computation time with a suitably low error. A Hermite-Simpson
transcription method with 15 mesh points runs in 1.99 s. We have then used these parameters to solve
the DHOCP (including a spatial obstacle) described in Section 4.2, yielding the evolutions of the system
states (Figure 5.14) and the input sequence (Figure 5.15). At all times the computed solution complies
with all constraints on the state and input values.

Physical Interpretation: In Figure 5.14 we notice that the system navigates in the presence of a
spatial obstacle in the X-Z plane by varying the thrust in the x- and z-axes. Initially the thrust in the
z-axis is increased above the hovering thrust (equal to (mag +mpl)g = 2.81∗9.81 = 27.6 N) to cause a net
upward acceleration. Likewise as a proxy of uz, F initially exceeds the hovering thrust for the payload
(equal to mplg = 2 ∗ 9.81 = 19.6 N) to cause a net upward acceleration. Both uz and F steadily decrease
until the agent reaches the peak of the obstacle, at which the z velocities of the agent and payload
changes from positive to negative and both enter freefall. Both uz and F then increase to counteract
freefall, bringing the agent and the payload to their respective target heights at the end of the mission.

Thrust in the x-axis is initially positive, causing the agent to accelerate. The thrust remains constant
for approximately 750 ms to allow the agent and the payload to accelerate. We notice that the payload
initially lags behind the agent, hence tanα is positive. The thrust begins to decrease after 750 ms,
causing the agent to slow down and the payload to temporarily lead the agent. The thrust crosses from
positive to negative as soon as the agent reaches the midway point, causing the x velocities of the agent
and payload to decrease. In this part of the mission the payload tends to lead the agent, hence tanα
is negative. At the end of the mission the agent briefly accelerates to counteract any overshoot from
the payload, allowing both the agent and the payload to stop at the target position. Evidently the
oscillations in the cable angle reflect the system’s pendulum nature.

Thrust in the y-axis is negligible, as desired; the non-zero input values can be attributed to numerical
errors from the optimization solver.
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5.2.2 Closed-Loop Simulations with the ADM and GDM Models

Implementation: Next we have attempted to implement the MPC-based algorithm described in Sec-
tion 4.2, using either the ADM model or the GDM model of the system in closed-loop with the controller.
Using the same solver parameters as for the open-loop simulation, the closed-loop simulation using the
ADM model exhibits positive feedback in the evolution of the system states (Figure 5.16) when the sys-
tem is fed the (open-loop) optimal sequence of inputs at the beginning of the simulation (Figure 5.18).
Due to this phenomenon we have been unable to run the closed-loop simulations with the ADM model
without violating the state constraints, so it is not possible to compare the computational runtime with
that of the open-loop simulation.

Unlike with the ADM model, the closed-loop simulation with the GDM model does not exhibit positive
feedback. For this reason ICLOCS2 can successfully reoptimize the control inputs every second, yielding
the evolutions of the system states (Figure 5.17) and the input sequence (Figure 5.19). The computational
runtime (1 minute, 45 seconds) is several orders of magnitude slower than that of the open-loop simulation
(1.99 s) due to overhead delays in Simulink, and an order of magnitude slower than the closed-loop
simulation with a GDM model of the single agent (17.4 s) due to the increased computational complexity
of the DHOCP and GDM model dynamics.

Observations: We first consider the closed-loop simulation using the ADM model. From analysis of
the linearization of the system’s dynamics, we note that the linearization’s state-to-state transition matrix
has all of its eigenvalues on the imaginary axis, so we can conclude that the system is not asymptotically
stable in open-loop (see Appendix A for the derivation). We can therefore expect that the presence of
noise introduced by numerical integration in Simulink is sufficient to cause positive feedback in such a
system. This phenomenon is clearly demonstrated in Figure 5.16, in which the x-axis position and velocity
for the agent and payload quickly grow unbounded from the beginning of the mission. Consequently the
tangent of the cable angle α diverges to infinity, equivalent to the cable angle converging to 90◦ (i.e. the
cable is fully horizontal).

Considering the GDM model, in Figures 5.17 and 5.19 we observe that the closed-loop evolutions of the
system states and input sequence are consistent with those of the open-loop simulation (Figures 5.14
and 5.15 respectively), with a greater number of mesh points and a piecewise constant representation
of the inputs {ux, uy, uz} and the cable tension F . Due to the increased number of mesh points in the
closed-loop simulation, we can observe high-frequency oscillations in the cable tension F resembling a
pair of lines in Figure 5.17, which are not captured by the open-loop simulation.

Mission Visualization: A series of still images from the mission visualization of the single-agent
system with a payload are depicted in Figure 5.20. In order to make the agent’s height changes more
obvious we have superimposed a line on each image representing the initial height.

Consistent with the evolution of the agent’s x and z positions in Figure 5.17, the agent progresses in
the +x direction between Figures 5.20a–5.20f. The agent’s acceleration and subsequent deceleration in
the x-axis reflect the evolution of the agent’s thrust ux in Figure 5.19. During the mission the agent
alternates between leading the payload and lagging behind it: even when the agent is accelerating in the
first half of the mission, Figure 5.20b depicts an instant where the agent lags behind the payload. Finally,
we can observe an increase and decrease in the agent’s z position and z velocity that are consistent with
obstacle avoidance in Figure 5.17.
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5.3 Centralized Dual-Agent CPT

We now proceed to construct a dual-agent system with a cable-suspended payload from two instances of
a single agent with a cable-suspended payload.

5.3.1 Open-Loop Simulations

Error Analysis: We have conducted a series of performance tests using combinations of the three
transcription methods (the Euler, Trapezoidal, and Hermite-Simpson methods) and various numbers of
mesh points {10,20,40,60,100}. We have performed the open-loop simulations for each combination and
extracted the computation time (Figure 5.21) and maximum error (Figure 5.22).

Figure 5.21: Computation Time (Two Agents with Payload, Open Loop)

Figure 5.22: Maximum Error (Two Agents with Payload, Open Loop)
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Figure 5.23: Maximum Error v. Computation Time (Two Agents with Payload, Open Loop)

Plotting the computation time against maximum error yields the graph in Figure 5.23. In these three
graphs we notice the same phenomena as in Section 5.1.1, with the computation times in Figure 5.21
longer than those of the single-agent system with a payload due to the increased complexity of the
DHOCP. To avoid waiting for an extended period to find an optimal solution, we have imposed an upper
limit of 500 iterations on the solver.

Solver Parameter Selection: We have selected the combination of transcription method and number
of mesh points that yields an optimal solution with the fastest computation time and a suitably low error.
A Hermite-Simpson transcription method with 10 mesh points runs in 10.7 s, an order of magnitude
slower than the open-loop simulation of a single agent with a payload (1.99 s). We have then used these
parameters to solve the DHOCP described in Section 4.3, yielding the evolutions of the system states
(Figure 5.24) and the input sequence (Figure 5.25). Due to the fact that the dual-agent model is a
constrained duplication of the single-agent system with a cable-suspended payload, we can observe that
the agents have identical inputs. At all times the computed solution complies with all constraints on the
state and input values.

Physical Interpretation: In each axis of motion the dual-agent system’s behavior is qualitatively
similar to that of the single agent with a cable-suspended payload.

Initially the ith agent’s thrust in the z-axis is increased above the hovering thrust (equal to (mag+ mpl

2 )g =
1.81 ∗ 9.81 = 17.8 N) to cause a net upward acceleration. Likewise the cable tensions Fi initially exceed
the hovering thrust for the payload (equal to mpl

2 g = 1∗9.81 = 9.81 N) to cause a net upward acceleration.
Note that the hovering thrusts for each agent and each payload are reduced from those of the single-agent
system with a payload due to the shared distribution of the payload’s mass between two agents. Both
uzi and Fi steadily decrease until the agent reaches the peak of the obstacle, at which the z velocities of
the agent and payload changes from positive to negative and both enter freefall. Both uzi and Fi then
increase to counteract freefall, bringing the agent and the payload to their respective target heights at
the end of the mission.

Thrust in the x-axis is initially positive, causing the ith agent to accelerate. The thrust remains constant
for approximately 1.25 s to allow the agent and the payload to accelerate. We notice that the payload
initially lags behind the agent, hence tanαi is positive. The thrust begins to decrease after 1.25 s, causing
the agent to slow down and the payload to temporarily lead the agent. The thrust crosses from positive
to negative as soon as the agent reaches the midway point, causing the x velocities of the agent and
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payload to decrease. In this part of the mission the payload tends to lead the agent, hence tanαi is
negative. At the end of the mission the agent briefly accelerates to counteract any overshoot from the
payload, allowing both the agent and the payload to stop at the target position. It is important to
observe that the oscillations in tanαi are slower than those of the single-agent system with a payload,
suggesting the presence of damping in the mechanical configuration of the dual-agent system.

Thrust in the y-axis is negligible as desired; the non-zero input values can be attributed to numerical
errors from the optimization solver.
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5.3.2 Closed-Loop Simulations with the GDM Model

Implementation: Due to the runtime issues encountered with the ADM model in Section 5.2.2, we
have focused on closed-loop simulations with the GDM model only. Using the same solver parameters
as in Section 5.3.1 with reoptimization every second, ICLOCS2 has produced the closed-loop evolutions
of the system states (Figure 5.26) and input sequence (Figure 5.27).

Observations: The closed-loop evolutions of the system states and input sequence resemble inter-
polated versions of those of the open-loop simulation (Figures 5.24 and 5.25 respectively). Unlike the
open-loop simulation, there are discontinuities in the closed-loop inputs for the x- and z-axes at moments
of reoptimization in Figure 5.27. Due to the increased number of mesh points in the closed-loop simula-
tion, in Figure 5.26 we observe high-frequency oscillations in the cable tensions {F1, F2} (resembling a
pair of lines) which are not captured by the open-loop simulation. Finally, the computational runtime (8
minutes, 57 seconds) is several orders of magnitude slower than that of the open-loop simulation (10.7 s)
due to overhead delays in Simulink, and an order of magnitude slower than that of the closed-loop simu-
lation of the single-agent system with a payload (1 minute, 45 seconds) due to the increased complexity
of the DHOCP and the GDM model dynamics.

Mission Visualization: A series of still images from the mission visualization of the dual-agent sys-
tem are depicted in Figure 5.28. In order to make the agents’ height changes more obvious we have
superimposed a line on each image representing the agents’ initial height.

Consistent with the evolution of the agent’s x and z positions in open-loop (Figure 5.24) and closed-loop
(Figure 5.26), the agents move in the +x direction between Figures 5.28a–5.28f. The agents’ intermittent
acceleration and deceleration in the x-axis reflect the changes in the agents’ x inputs in Figure 5.27. As
per the oscillations in tanαi in Figure 5.26, during the mission the agent alternates between leading
the payload and lagging behind it, with the swing of the payload masses less pronounced than in the
visualization of the single agent with a payload (Figure 5.20). We also observe an increase and decrease
in the agents’ z positions and z velocities that are consistent with obstacle avoidance in Figures 5.24 and
5.26.
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5.4 Centralized Triple-Agent CPT

In this section we construct a triple-agent system with a cable-suspended payload from three instances
of a single agent with a cable-suspended payload.

Experimentally we have found that the solver cannot find a feasible solution for the triple-agent CPT
problem as defined in (3.30), hence we have redefined the DHOCP as follows:

min
U(t), s

∥∥X(tk) −X(tf )
∥∥2 +

tf∑
τ=tk

‖U(τ)‖2 + |s| (5.1a)

subject to√
(xci(t) − xi(t))2 + (yci(t) − yi(t))2 + (zci(t) − zi(t))2 = L, ∀i ∈ {1, ..., N}, ∀t ∈ [0, tf ] (5.1b)√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2 + (zi(t) − zj(t))2 > σ, ∀i, j ∈ {1, ..., N}, i 6= j, ∀t ∈ [0, tf ] (5.1c)

zc2(t) − h(tanh(xc2(t) − xa) − tanh(xc2(t) − xb)) − κ− s = 0, κ > 0, s > 0, ∀t ∈ [0, tf ] (5.1d)

where the cable length L=1.20 m, the separation constant σ=0.90 m, the obstacle’s height h=1.00 m,
the clearance κ=0.50 m, and the parameters xa=4.10 m and xb=4.90 m correspond respectively to the
start and end of the obstacle’s length in the x-axis.

In (5.1d) we have imposed one obstacle path constraint defined with respect to the position of the middle
payload mass. In addition, we have included a slack variable s in the single obstacle path constraint.
Minimizing this slack variable allows the solver to find a solution with the smallest possible violation of
a ‘hard’ path constraint if no feasible solution can be found [39]. We have chosen to weight the slack
variable in the cost function (5.1a) using the L1 norm instead of the L2 norm, since the former yields a
marginally faster runtime in open-loop simulations (67.1 s as opposed to 70.8 s).

5.4.1 Open-Loop Simulations

Error Analysis: As in the previous section, we have conducted a series of performance tests using
combinations of three transcription methods (the Euler, Trapezoidal, and Hermite-Simpson methods)
and various numbers of mesh points {10,20,40,60,100}. We have performed the open-loop simulations for
each combination and extracted the computation time (Figure 5.29) and maximum error (Figure 5.30).

Figure 5.29: Computation Time (Three Agents with Payload, Open Loop)
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Figure 5.30: Maximum Error (Three Agents with Payload, Open Loop)

Figure 5.31: Maximum Error v. Computation Time (Three Agents with Payload, Open Loop)

Plotting the computation time against maximum error yields the graph in Figure 5.31. We again notice
the same phenomena as in Section 5.1.1. The computation times in Figure 5.29 are much longer than
those of the single agent with a payload, due to the increased number of states (36) and of nonlinear
path constraints associated with the payload rigidity and cable lengths.

Solver Parameter Selection: We have selected the combination of transcription method and number
of mesh points that yields an optimal solution with a fast computation time and a suitably low error.
A Hermite-Simpson transcription method with 10 mesh points runs in 67.1 s. We have then used
these parameters to solve the DHOCP described in Section 5.4 with obstacle avoidance, yielding the
evolutions of the system states (Figure 5.32) and the input sequence (Figure 5.33). At all times the
computed solution complies with all constraints on the state and input values.



CHAPTER 5. RESULTS 58

Fi
gu

re
5.

32
:

Ev
ol

ut
io

n
of

Sy
st

em
St

at
es

(T
hr

ee
A

ge
nt

s
w

ith
Pa

yl
oa

d,
O

pe
n

Lo
op

)



CHAPTER 5. RESULTS 59

Fi
gu

re
5.

33
:

Ev
ol

ut
io

n
of

Sy
st

em
In

pu
ts

(T
hr

ee
A

ge
nt

s
w

ith
Pa

yl
oa

d,
O

pe
n

Lo
op

)



CHAPTER 5. RESULTS 60

Physical Interpretation: In Figure 5.33 we notice that the system navigates in the presence of a
spatial obstacle in the X-Z plane by varying the thrust of each agent in the x- and z-axes. Since the
triple-agent model is a constrained combination of three individual agents with cable-suspended payloads,
the analysis is qualitatively similar to that of the dual-agent CPT system, however the second agent has
different input values to those of the other agents. Since the obstacle path constraint is imposed directly
on the second agent-payload system, the second agent must first adjust its position in the x- and z-
axes so that the payload avoids the obstacle, and the other agents must move to comply with the path
constraints on cable length and payload rigidity.

Initially the ith agent’s thrust in the z-axis uzi is increased above the hovering thrust (equal to (mag +
mpl

3 )g = 1.48 ∗ 9.81 = 14.5 N) to cause a net upward acceleration, with uz2 slightly greater than uz1 and
uz3. Likewise the cable tensions Fi initially exceed the hovering thrust required for the payload (equal
to mpl

3 g = 2
3 ∗ 9.81 = 6.54 N) to cause a net upward acceleration. Note that the hovering thrusts for each

agent and payload attachment point are reduced from those of the dual-agent CPT system due to the
shared distribution of the payload’s mass between three agents. Both uzi and Fi steadily decrease until
the middle agent reaches the peak of the obstacle, at which uz2 is less than uz1 and uz3. The z velocities
of each agent and attachment point changes from positive to negative, so all enter freefall. Both uzi and
Fi then increase to counteract freefall, bringing the agents and the payload to their respective target
heights at the end of the mission.

As for the dual-agent CPT system, thrust in the x-axis uxi is initially positive with ux2 greater than
ux1 and ux3, so the second agent accelerates faster than the other agents. Each agent’s thrust remains
constant for approximately 750 ms to allow the payload to accelerate, with the second agent accelerating
faster than the other two agents. We notice that the payload’s attachment points initially lag behind
their respective agent so tanαi is positive. Reflecting the relative motion of the second agent with respect
to the other agents, tanα2 oscillates faster than tanα1 and tanα3.

After 750 ms ux2 begins to decrease, causing the agent to slow down and the payload’s second attachment
point to temporarily lead the agent. At the same time ux1 and ux3 briefly rise, so that the first and third
agents can maintain their separation from the second agent. When the second agent reaches the midway
point, ux2 crosses from positive to negative, causing the x velocity of the second attachment point to
decrease. Near 3 s ux1 and ux3 cross from positive to negative, so the first and third attachment points’
velocities decrease. In this part of the mission the first and third attachment points lead the first and
third agents so tanα1 and tanα3 are negative, whereas tanα2 oscillates according to the position of the
second agent relative to the second attachment point. At the end of the mission each agent undergoes
negative acceleration to counteract any overshoot from the payload, allowing each agent and the payload
to stop at their target positions.

Thrust in the y-axis uyi is negligible, as desired. The non-zero input values can be attributed to numerical
errors from the optimization solver.
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5.4.2 Closed-Loop Simulations with the GDM Model

Implementation: Due to the runtime issues with the ADM model of a pendulum in Simulink men-
tioned in Section 5.2.2, we have completed closed-loop simulations with a GDM model only. To avoid
waiting for an extended period to find a feasible solution for (5.1), we have imposed an upper limit of 40
iterations on the solver. Using the same simulation parameters as in Section 5.4.1 with reoptimization
every second, ICLOCS2 has produced the closed-loop evolutions of the system states (Figure 5.34) and
input sequence (Figure 5.35).

Observations: The closed-loop evolutions of the system states and input sequence resemble inter-
polated versions of those of the open-loop simulation (Figures 5.32 and 5.33 respectively). Unlike the
previous open-loop simulation, each agent’s thrusts are identical. Due to the increased number of mesh
points in the closed-loop simulation, in Figure 5.34 the cable tensions {F1, F2, F3} exhibit high-frequency
oscillations which are not captured by the open-loop simulation. We also note that F2 differs from F1
and F3 in the last half of the mission. In the last second of the mission, F2 appears to fluctuate per-
fectly out of phase with F1 and F3, suggesting moderate deformations in the payload as it approaches
its terminal height. The cable tensions then converge to 10.8 N, exceeding the hovering thrust required
for the payload (6.54 N). Given that the cable tensions’ final value differs from that of the open-loop
simulation in Figure 5.32, it is likely that in the final reoptimization at 4 s the solver converged to an
erroneous evolution of the cable tensions and terminated without finding the optimal solution. The
computational runtime (29 minutes, 26 seconds) is several orders of magnitude slower than that of the
open-loop simulation (67.1 s) due to overhead delays in Simulink, and that of the closed-loop simulation
of the single agent with a payload (1 minute, 45 seconds) due to the increased computational complexity
of the DHOCP and the GDM model dynamics.

Mission Visualization: A series of still images from the mission visualization are depicted in Figure
5.36. To enable visual comparisons of height throughout the mission, we have superimposed a line on
each image representing the agents’ initial height. Consistent with the evolution of the agent’s x and z
positions in open-loop (Figure 5.32) and closed-loop (Figure 5.34), the agents move in the +x direction
between Figures 5.36a–5.36f. The agents’ pattern of acceleration and deceleration in the x-axis reflect
the changes in the agents’ x inputs in Figures 5.33 and 5.35. As per Figure 5.34, each agent starts by
leading its payload mass (so the cable angle is positive), then after 2 s each agent lags its payload mass
as it slows down (so the cable angle is negative). We observe that in Figures 5.36a–5.36c each agent and
its payload mass initially accelerate in the +z direction, thus increasing their z positions to navigate over
the spatial obstacle. Subsequently in Figures 5.36d–5.36f the z positions of each agent and its payload
mass decrease until the target z positions are reached.

When compared with the dual-agent CPT system, the oscillations in tanαi have a similar period with
reduced amplitude. Such behavior might be explained by the presence of damping inside the triple-agent
configuration, reflecting cancellations of the most extreme differences in the forces exerted by each agent
on the payload.
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Chapter 6

Conclusions

We conclude with a summary of the project’s outcomes, evaluate performance and compliance with
project objectives, and identify future work to advance the project.

6.1 Summary

Our project has focused on the application of MPC to the problem of cooperative payload transportation.
Our primary goal has been to develop a novel MPC-based control architecture for an aerial multi-agent
CPT scheme with a cable-suspended payload.

Problem Formulation: After surveying the literature on CPT schemes, summarizing the state of
the art and explaining the key features of contemporary CPT solutions, we considered numerous CPT
solutions in order to identify the necessary requirements for an aerial multi-agent CPT scheme with a
cable-suspended payload. We applied these requirements to inform the design of a novel centralized
triple-agent CPT scheme based on MPC theory. We analytically derived a mathematical model of the
triple-agent system that represented the agents and segments of the payload as point masses governed
by double-integrator dynamics. Using this model, we formulated a DHOCP in which the cost function
was the sum of the squared agent thrusts. After identifying several physical constraints (such as payload
rigidity and cable connectivity) and performance requirements (such as inter-agent collision avoidance
and spatial obstacle avoidance) we formulated these as path constraints for the DHOCP.

Implementation Stages: We conducted a staged implementation of the proposed control architecture
using the ICLOCS2 trajectory optimization package for simulations in MATLAB. We first considered
the simpler problem of relocating a single agent while avoiding a spatial obstacle and then proceeded to
formulate the relocation problem for a single agent with a cable-suspended payload, the dual-agent CPT
problem, and the CPT problem for three agents with a cable-suspended payload.

Simulations: For each stage of the implementation process, we conducted at least two types of simula-
tions to observe system behavior. We ran open-loop simulations, in which ICLOCS2 solved the DHOCP
once and computed the evolution of the system’s states and inputs. We verified the open-loop perfor-
mance with simulations of the system in closed loop with ICLOCS2 by developing a GDM model of the
system in Simulink, also allowing visualization of the system’s physical behavior. To our knowledge, it
was the first time that true MPC was implemented for aerial CPT schemes using cable suspension. In
addition to the GDM model, we developed a closed-loop simulation using an ADM model. However,
due to unforeseen numerical errors in Simulink only the single-agent simulation ran successfully. We also
experienced a setback with the triple-agent system: ICLOCS2 could not converge to a feasible solution

65



CHAPTER 6. CONCLUSIONS 66

for the original DHOCP with obstacle avoidance. To address this, we replaced three obstacle path con-
straints with a single obstacle path constraint, and softened this constraint by employing a slack variable
weighted with an L1 norm exact penalty function. Accordingly, we were able to demonstrate that the
triple-agent system in closed-loop could indeed converge to a feasible solution and thus avoid a spatial
obstacle, even though the computational runtime was impractically long.

Acquired Skills: The project has drawn on elements of optimization and numerical methods, mechan-
ics, and optimal control theory. It may serve as a starting point for further work in CPT and robotic
control because it has assisted in refining skills in model construction and simulation (particularly in
MATLAB and Simscape). It has also helped to develop a working familiarity with ICLOCS2, now
applicable to other optimal control problems.

6.2 Evaluation

Objectives: The project outcomes have met the objectives outlined in Section 1.3 of this report. We
have implemented an optimal controller for a multi-agent CPT scheme that uses ICLOCS2 for trajectory
optimization, simulating its performance in open-loop and closed-loop using Simulink. Through our
work with the Simscape models we have also created visualizations of the CPT scheme in operation and
used the results to verify the soundness of the open-loop simulation. We have achieved compliance with
secondary mission objectives such as collision avoidance, eliminated the need for controller fine-tuning,
and have been able to verify the optimality of controller inputs through the use of ICLOCS2.

Challenges: Despite achieving both objectives, a number of issues have affected the project’s imple-
mentation.

While the mathematical models for the multi-agent CPT schemes appear reasonable, the performance
of the implemented CPT schemes has needed improvement. In the tests that we conducted we focused
on situations involving motion in a maximum of two dimensions and the presence of a spatial obstacle.
However, it is worth noting that the triple-agent system’s simulations were noticeably slow when com-
pared with those of the single agent with a cable-suspended payload. It is possible that the DHOCPs
for the three payload transportation systems considered in the project were posed in a format that the
solver could not solve efficiently because of the presence of differential algebraic equations in the systems’
models.

Another issue, pertaining in particular to the closed-loop simulations with an ADM model, was the
presence of positive feedback as discovered in Section 5.2.2. Having designed the closed-loop simulations
with the analytically derived and the GDM models from the same template in Simulink, we suspect that
an improper configuration of the ADM model’s sample times and the choice of a variable-step numerical
integrator in Simulink may have destabilized the model’s behavior.

Underlying the performance issues associated with both the open-loop and the closed-loop simulations
we hypothesize that three factors could, individually or collectively, have adversely affected the soundness
of the simulated models:

1. We have simplified the GDM model by approximating the agents and payload as point masses and
the cables as distance constraints;

2. We have not considered the rotational dynamics of the agents and payload, such that we have
assumed all roll, pitch, and yaw angles and their derivatives to be zero;

3. The models did not explicitly calculate the cable tension as a function of the separation between
agent and payload, but rather the cable tension was implemented in ICLOCS2 as an input con-
strained within a narrow range of the hovering thrust of the payload and excluded from the
DHOCP’s objective function.
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The first two factors are the most important sources of model inaccuracies. The simplifications to the
GDM model have transformed each model from a coupled system of compound pendula (with each agent
rotating about its cable attachment point, and the payload rotating about its cable attachment points),
into a coupled system of simple pendula (with the payload split into multiple point masses, each rotating
about their respective agents without a change in orientation). The latter configuration neglects the
true moments of inertia for each agent and the payload, leading to a significantly reduced model of the
torques experienced by each agent and the payload. Furthermore, omitting rotational variables from
the models prevents analysis of rotational dynamics and the interactions between angular and linear
kinetic energies. Consequently the models assume, unrealistically, that the agents and payload maintain
a constant orientation with respect to the coordinates system.

The third factor could explain the presence of high-frequency oscillations in the simulations of cable
tension, as seen in Figures 5.16, 5.17, 5.26, and 5.34. The DHOCPs have not included stiffness constraints
on the rate of change in cable tension so the solver has converged to solutions in which cable tension
oscillates very rapidly.

Note that we have assumed that the agents and payload do not experience headwinds or travel fast
enough to experience significant drag forces. In real-life scenarios, the aerodynamics of a multi-agent
system carrying a payload must be included in the system model.

Project Context: Despite these limitations, the achievements of the project should be considered
in the context of the wider field. The literature relating to aerial CPT indicates that no one has yet
considered how to use MPC techniques for trajectory optimization and compliance with performance
objectives. There appears to be a reliance on mature but less sophisticated control techniques such as
the PID controller. We note however that MPC techniques have been used with success in terrestrial
CPT rigid grasp systems [24][25][35][36]. By means of this project, we have demonstrated the viabil-
ity of applying MPC to a multi-agent aerial CPT system, thereby presenting an opportunity for the
development of CPT schemes that are more energy efficient, more reliable, and safer.

6.3 Future Work

A number of extensions to the project may be immediately pursued, with the performance issues described
in Section 6.2 worth addressing first.

Problem Formulation: A more accurate model of the three payload transportation system models
should incorporate insights from the body of aeronautical engineering literature on the dynamics of
sling-load systems (such as in [40] and [41]), representing the system as one or more non-point objects
connected via moderately elastic cables to a single payload. While this would enhance the realism of
the model by including rotational dynamics, it could lead to a more computationally complex prob-
lem. For example, the triple-agent system in (3.29) has 36 states, while a more accurate triple-agent
system would have 48 states corresponding to three agents and one payload, each with twelve states
(x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇). Nevertheless, the need for path constraints for the payload’s mass distri-
bution would be eliminated by the latter model, so the resulting DHOCP could be solved more easily
by ICLOCS2. We should then ask whether more than three agents could be viably included in an aerial
cable suspension CPT scheme. If the relevant DHOCPs are computationally intractable for the opti-
mization solver, a mechanically simpler rigid-grasp CPT scheme might be the only viable solution given
the state of current optimization technology.

Model Improvements: For cases involving a payload, the effect of positive feedback in the closed-
loop simulations with an ADM model should be eliminated. This issue could be corrected by using a
fixed-step solver with smaller step sizes and reoptimizing the control inputs with greater frequency. To
impose the condition of cable stiffness on the solutions found by the optimization solver, path constraints
on the rate of change in cable tension should be implemented in ICLOCS2 (perhaps using finite difference
methods). The aerodynamics of the system should also be explored, particularly situations where there
are significant headwinds or when the payload experiences significant drag.
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Operational Enhancements: Other operational assumptions about CPT schemes should be reviewed
after the aforementioned issues are resolved. Implementing ‘warm-starting’ in ICLOCS2 should reduce
the computational runtime of the closed-loop simulations by initializing the solver with the previous so-
lution. Three-dimensional payload relocation with one agent and multiple agents should be implemented
by modifying the intial and final state settings in the problem file for ICLOCS2. Active damping ma-
neuvers by agents to prevent excessive payload swings should be explored. After confirming the safety of
the models’ behavior in simulation, the viability of the existing dual- and triple-agent schemes should be
tested using suitable hardware. This would require the development of an interface between ICLOCS2
and the relevant software infrastructure (such as the Robot Operating System).

Control Paradigms: In the longer term, several possibilities for future research remain open. In our
project we have considered a centralized CPT paradigm in which computation of control inputs occurs
in one place, with full knowledge of all states. The disadvantages of the centralized paradigm are the
reliance on communication channels and the greater computational complexity of the resulting DHOCPs.
Paradigms in which the computation of control inputs is delegated to individual agents would be more
appropriate for a real-world scenario, relying on either full communication (distributed control) or no
communication between agents (decentralized control).

Beyond the issue of control architecture, a number of additional topics in CPT merit further investigation.

Formation Composition: In the current project we have assumed that the payload is manipulated by
a formation of identical agents, however a richer class of CPT schemes would handle non-identical agents
of different sizes, thrust capabilities, and hardware configurations. In hardware tests these considerations
would be fundamental to the notion of system robustness: the possibilities of a hardware fault, mismatch
between the agents’ dynamical properties, or a breakdown in communications would immediately create a
system of heterogeneous agents. There may also exist situations in which a heterogeneous agent formation
is beneficial, for example when one or more humans are included in the formation. Such interactions
would involve varying degrees of cooperation and command hierarchies among agents’ controllers, so an
analysis of multi-agent decision-making in the system would depend on concepts from game theory.

Non-Ideal Mechanical Behavior: The limitations of using an ideal model of the system might
become apparent in hardware testing, so the model’s accuracy could be enhanced by considering non-
ideal mechanical behaviors, such as cable elasticity or payloads with non-rigid compositions (e.g. liquids
and gels). Accounting for these phenomena would inevitably increase the complexity of the system
model, so the balance between model accuracy and computational tractability would be a fruitful topic
to investigate.

Each of these topics constitute a rich area of contemporary research in robotic manipulation and trans-
portation, opening up avenues for further exploration of the CPT problem.
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Appendix A

Single Agent with Pendulum
Dynamics Linearization

Consider the system described in Section 4.2, comprising a single agent with a cable-suspended payload.
The state transition equation is presented in (A.1):

F (X(t), U(t)) = d

dt
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ż
1

mag
(uz − F −magg)

ẋc
1

mpl
(F tan(α))
ẏc
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(A.1)

Consider the continuous-time system described by (A.1) and define the following variables:

• the state equilibrium point Xe = [2.1, 0, 0, 0, 2.2, 0, 2.1, 0, 0, 0, 1, 0]T ,

• the inputs Ue = [0, 0, (mag +mpl)g]T ,

• the new state variable z = X −Xe,

• the new input variable v = U − Ue.

We may linearize the system about (Xe, Ue) [42]:

dz

dt
= Az +Bv (A.2)

where

A = ∂F

∂X
|X=Xe,U=Ue

B = ∂F

∂U
|X=Xe,U=Ue
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We can then use a MATLAB live script to evaluate the Jordan form of A:

J =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −σ1 0 0 0 0 0 0 0 0 0
0 0 0 σ1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −σ1 0 0 0
0 0 0 0 0 0 0 0 0 σ1 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



(A.3)

where σ1 =
√

918870 i
180 .

We note that since the off-diagonal entries of J are non-zero, the Jordan blocks corresponding to eigen-
values of A with zero real part are non-scalar and therefore the open-loop system is unstable [42].



Appendix B

Source Code

This project has an online repository at https://github.com/williamsdaniel888/ocplot.

Contents of Repository

• /SingleAgent – scripts and functions for open-loop and closed-loop simulations relating to the
single-agent relocation problem.

• /SingleAgentPayload – scripts and functions for open-loop and closed-loop simulations relating
to the single-agent payload transportation problem.

• /DualAgentCPT – scripts and functions for open-loop and closed-loop simulations relating to the
dual-agent CPT problem.

• /TripleAgentCPT – scripts and functions for open-loop and closed-loop simulations relating to the
triple-agent CPT problem.

Installation

A guide to installing and setting up the ICLOCS2 trajectory optimization package for MATLAB may
be found at http://www.ee.ic.ac.uk/ICLOCS/Examples.html/. We recommend the use of the Opti
distribution’s Ipopt MEX file with ICLOCS2.

After cloning the repository, please ensure that the files for ICLOCS2 and Ipopt are placed in the root
directory.
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